MAC Layer Protocols for Internet of Things: A Survey
2019, Future Internet
https://doi.org/10.3390/FI11010016Abstract
Due to the wide variety of uses and the diversity of features required to meet an application, Internet of Things (IoT) technologies are moving forward at a strong pace to meet this demand while at the same time trying to meet the time-to-market of these applications. The characteristics required by applications, such as coverage area, scalability, transmission data rate, and applicability, refer to the Physical and Medium Access Control (MAC) layer designs of protocols. This paper presents a deep study of medium access control (MAC) layer protocols that are used in IoT with a detailed description of such protocols grouped (by short and long distance coverage). For short range coverage protocols, the following are considered: Radio Frequency Identification (RFID), Near Field Communication (NFC), Bluetooth IEEE 802.15.1, Bluetooth Low Energy, IEEE 802.15.4, Wireless Highway Addressable Remote Transducer Protocol (Wireless-HART), Z-Wave, Weightless, and IEEE 802.11 a/b/g/n/ah. For the...
FAQs
AI
What defines the efficiency of MAC layer protocols for IoT applications?
The paper reveals that protocol efficiency is influenced by characteristics like transmission power, data rates, and energy consumption, exemplified by protocols like LTE CAT-M achieving lower power usage for IoT deployments.
How do different MAC protocols compare in terms of range and data rates?
MAC layer protocols show diversity in range, where LP-WANs like LoRa and NB-IoT support over 15 km coverage, while short-range protocols commonly max out at 1 km.
What role does power consumption play in MAC layer protocol selection?
Protocols such as Bluetooth Low Energy (BLE) exhibit low power consumption, with operational efficiencies allowing devices to last up to 10 years, making them suitable for battery-powered IoT applications.
How does the IEEE 802.11 protocol evolve to adapt to IoT demands?
The study shows that IEEE 802.11ah integrates low power and long-range capabilities, achieving a 24 dB gain in link budget, designed specifically for M2M communications.
What are the main open research issues identified in the comparison of MAC protocols?
Challenges like inter-protocol roaming, security variations, and the influence of coexistence among technologies in the same spectrum are highlighted as critical areas for future study.
References (130)
- IEEE GET Program. IEEE 802 GET 802(R) Standards. Available online: https://ieeexplore.ieee.org/browse/ standards/get-program/page/series?id=68 (accessed on 10 December 2018).
- Buratti, C.; Conti, A.; Dardari, D.; Verdone, R. An overview on wireless sensor networks technology and evolution. Sensors 2009, 9, 6869-6896. [CrossRef] [PubMed]
- IEEE Computer Society. IEEE Standards IEEE 802.15.4-Part 15.4-Wireless MAC and PHY Specifications for Low-Rate Wireless Personal Area Networks-LR-WPANs, 2003th ed.; The Institute of Electrical and Electronics Engineers, Inc.: Piscataway, NJ, USA, 2003.
- IEEE 802.15.6-2012. IEEE Standard for Local and Metropolitan Area Networks-Part 15.6: Wireless Body Area Networks; IEEE Standard for Information Technology; IEEE: Piscataway, NJ, USA, 2012; Volume 802, pp. 1-271.
- Alam, M.M.; Hamida, E.B. Surveying wearable human assistive technology for life and safety critical applications: Standards, challenges and opportunities. Sensors 2014, 14, 9153-9209. [CrossRef] [PubMed]
- Alam, M.M.; Hamida, E.B. Performance Evaluation of IEEE 802.15. 6 MAC for Wearable Body Sensor Networks Using a Space-Time Dependent Radio Link Model; IEEE: Piscataway, NJ, USA, 2014; pp. 441-448.
- Kwak, K.S.; Ullah, S.; Ullah, N. An overview of IEEE 802.15. 6 standard. In Proceedings of the 2010 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL), Roma, Italy, 7-10 November 2010; pp. 1-6.
- Flore, D.; 3GPP. Evolution of LTE in Release 13; 3GPP: Sophia Antipolis, France, 2015.
- Roy, S.; Jandhyala, V.; Smith, J.R.; Wetherall, D.J.; Otis, B.P.; Chakraborty, R.; Buettner, M.; Yeager, D.J.; Ko, Y.C.; Sample, A.P. RFID: From supply chains to sensor nets. Proc. IEEE 2010, 98, 1583-1592. [CrossRef]
- Finkenzeller, K. RFID Handbook, 3rd ed.; Wiley: Hoboken, NJ, USA, 2010.
- Atzori, L.; Iera, A.; Morabito, G. The internet of things: A survey. Comput. Netw. 2010, 54, 2787-2805. [CrossRef]
- International Organization for Standardization (ISO). ISO/IEC 14443-1:2016 Standard, Identification Cards-Contactless Integrated Circuit Cards-Proximity Cards-Part 1: Physical Characteristics. Available online: https://www.iso.org/standard/70170.html (accessed on 11 May 2018).
- Issovits, W.; Hutter, M. Weaknesses of the ISO/IEC 14443 protocol regarding relay attacks. In Proceedings of the IEEE International Conference on RFID-Technologies and Applications (RFID-TA), Sitges, Spain, 15-16 September 2011; pp. 335-342.
- International Organization for Standardization (ISO). ISO/IEC 14443-2:2016-Identification Cards-Contactless Integrated Circuit Cards-Proximity Cards-Part 2: Radio Frequency Power and Signal Interface. Available online: https://www.iso.org/standard/66288.html (accessed on 14 May 2018).
- Bhuptani, M.; Moradpour, S. RFID Field Guide: Deploying Radio Frequency Identification Systems; Prentice Hall PTR: Upper Saddle River, NJ, USA, 2005.
- GS1 Standards. EPC/RFID-Standards. Available online: https://www.gs1.org/standards/epc-rfid (accessed on 14 May 2018).
- GS1 Standards. EPCIS and Core Business Vocabulary (CBV)-Standards. Available online: https://www. gs1.org/standards/epcis (accessed on 14 May 2018).
- Coskun, V.; Ozdenizci, B.; Ok, K. A survey on near field communication (NFC) technology.
- Wirel. Pers. Commun. 2013, 71, 2259-2294. [CrossRef]
- International Organization for Standardization and International Electrotechnical Commission. ISO/IEC 18092:2013/Cor 1:2015. Available online: https://standards.iso.org/ittf/PubliclyAvailableStandards/index. html (accessed on 10 December 2018).
- Want, R. Near field communication. IEEE Pervasive Comput. 2011, 10, 4-7. [CrossRef]
- Kurzweil, R. The singularity is near. In Ethics and Emerging Technologies; Springer: Berlin, Germany, 2014; pp. 393-406.
- Atzori, L.; Iera, A.; Morabito, G. From "Smart Objects" to "Social Oobjects": The Next Evolutionary Step of the Internet of Things. IEEE Commun. Mag. 2014, 52, 97-105. [CrossRef]
- Zhao, Y.; Mahoney, B.; Smith, J.R. Analysis of a Near Field Communication wireless power system. In Proceedings of the IEEE Wireless Power Transfer Conference (WPTC), Aveiro, Portugal, 5-6 May 2016; pp. 1-4.
- Coskun, V.; Ok, K.; Ozdenizci, B. Near Field Communication (NFC): From Theory to Practice; John Wiley & Sons: Hoboken, NJ, USA, 2011.
- NFC-Forum. The Near Field Communication-Specification Releases. Available online: https://nfc-forum. org/ (accessed on 24 July 2018).
- Madlmayr, G.; Langer, J.; Scharinger, J. Managing an NFC ecosystem. In Proceedings of the IEEE 7th International Conference on Mobile Business (ICMB'08), Barcelona, Spain, 7-8 July 2008; pp. 95-101.
- Bruno, R.; Conti, M.; Gregori, E. Bluetooth: Architecture, protocols and scheduling algorithms. Clust. Comput. 2002, 5, 117-131. [CrossRef]
- Bluetooth SIG. Bluetooth Specification Version 5.0 Vol 0: Master Table of Contents & Compliance Requirements; Bluetooth Special Interest Group (SIG) Specifications: Kirkland, WA, USA, 2016. Available online: https://www.bluetooth.com/specifications/adopted-specifications (accessed on 24 July 2018).
- Xiao, Y.; Pan, Y. Emerging Wireless LANs, Wireless PANs, and Wireless MANs: IEEE 802.11, IEEE 802.15, 802.16 Wireless Standard Family; John Wiley & Sons: Hoboken, NJ, USA, 2009; Volume 57.
- Website, B.T. Bluetooth Protocol Specifications. Available online: https://www.bluetooth.org/Technical/ Specifications/adopted.htm (accessed on 31 May 2017).
- Afonso, J.A.; Maio, A.J.F.; Simoes, R. Performance Evaluation of Bluetooth Low Energy for High Data Rate Body Area Networks. Wirel. Pers. Commun. 2016, 90, 121-141. [CrossRef]
- Instruments, T. Application Note AN092-Measuring Bluetooth R Low Energy Power Consumption; Technical Report; Texas Instruments: Dallas, TX, USA, 2012.
- Ergen, S.C. ZigBee/IEEE 802.15.4 Summary; University of California: Berkeley, CA, USA, 2004; Volume 10; p. 17. Available online: http://users.eecs.northwestern.edu/~peters/references/ZigtbeeIEEE802.pdf (accessed on 31 May 2017).
- Baronti, P.; Pillai, P.; Chook, V.W.; Chessa, S.; Gotta, A.; Hu, Y.F. Wireless sensor networks: A survey on the state of the art and the 802.15. 4 and ZigBee standards. Comput. Commun. 2007, 30, 1655-1695. [CrossRef]
- Zheng, J.; Lee, M.J. A comprehensive performance study of IEEE 802.15.
- Sens. Netw. Oper. 2006, 4, 218-237.
- Sheng, Z.; Yang, S.; Yu, Y.; Vasilakos, A.; Mccann, J.; Leung, K. A survey on the ietf protocol suite for the internet of things: Standards, challenges, and opportunities. IEEE Wirel. Commun. 2013, 20, 91-98. [CrossRef]
- Shelby, Z.; Bormann, C. 6LoWPAN: The Wireless Embedded Internet; John Wiley & Sons: Hoboken, NJ, USA, 2011; Volume 43.
- Centenaro, M.; Vangelista, L.; Zanella, A.; Zorzi, M. Long-range communications in unlicensed bands: The rising stars in the IoT and smart city scenarios. IEEE Wirel. Commun. 2016, 23, 60-67. [CrossRef]
- Rao, S.M.; Krishna, M.V.; Reddy, V.M. Performance analysis of hybrid protocol for IEEE802.15.4 based wireless sensor network. Int. J. VLSI Embed. Syst. Signal Process. 2015, 2, 3-7.
- Fareeha Zafar, M. Performance Analysis of IEEE 802.15.4 in Terms of Energy Efficient Parameters within WSN. J. Appl. Environ. Biol. Sci. 2014, 4, 548-557.
- Mikhaylov, K.; Plevritakis, N.; Tervonen, J. Performance analysis and comparison of Bluetooth Low Energy with IEEE 802.15. 4 and SimpliciTI. J. Sens. Actuator Netw. 2013, 2, 589-613. [CrossRef]
- Yuan, W.; Wang, X.; Linnartz, J.P.M.G.; Niemegeers, I.G.M.M. Coexistence performance of IEEE 802.15. 4 wireless sensor networks under IEEE 802.11 b/g interference. Wirel. Pers. Commun. 2013, 68, 281-302. [CrossRef]
- Srivastava, R.; Kumar, A. Performance analysis of beacon-less IEEE 802.15. 4 multi-hop networks. In Proceedings of the Fourth International Conference on Communication Systems and Networks (COMSNETS), Bangalore, India, 3-7 January 2012; pp. 1-10.
- IEEE 802.15 WPAN TM Task Group-4e (TG4e). IEEE 802.15 WPAN Document Archive. Available online: http://grouper.ieee.org/groups/802/15/pub/Download.html (accessed on 12 June 2018).
- Guglielmo, D.D.; Brienza, S.; Anastasi, G. IEEE 802.15.4e: A survey. Comput. Commun. 2016, 88, 1-24. [CrossRef]
- De Guglielmo, D.; Anastasi, G.; Seghetti, A. From IEEE 802.15.4 to IEEE 802.15.4e: A step towards the internet of things. In Advances onto the Internet of Things; Springer: Cham, Switzerland, 2014; Volume 10; pp. 135-152.
- Oliveira, L.M.; Rodrigues, J.J. Wireless Sensor Networks: A Survey on Environmental Monitoring. JCM 2011, 6, 143-151. [CrossRef]
- Shin, Y.S.; Lee, K.W.; Ahn, J.S. Analytical performance evaluation of IEEE 802.15.4 with multiple transmission queues for providing QoS under non-saturated conditions. In Proceedings of the 16th
- Asia-Pacific Conference on Communications (APCC), Auckland, New Zealand, 31 October-3 November 2010; pp. 334-339.
- Al-Nidawi, Y.; Yahya, H.; Kemp, A.H. Impact of mobility on the IoT MAC infrastructure: IEEE 802.15.4e TSCH and LLDN platform. In Proceedings of the IEEE 2nd World Forum on Internet of Things (WF-IoT), Milan, Italy, 14-16 December 2015; pp. 478-483.
- Santhi, S.; Divya, B. Energy Consumption using IEEE802.15.4 Sensor Networks. Int. J. Comput. Appl. 2015, 116, 30-33.
- Petersen, S.; Carlsen, S. WirelessHART Versus ISA100.11a: The Format War Hits the Factory Floor. IEEE Ind. Electron. Mag. 2011, 5, 23-34. [CrossRef]
- International Society of Automation (ISA). ISA100, Wireless Systems for Automation-ISA. Available online: https://www.isa.org/isa100/ (accessed on 15 May 2017).
- FieldComm-Group. HART Communication Protocol. Available online: https://fieldcommgroup.org/ (accessed on 15 May 2017).
- WINA. Wireless Industrial Networking Alliance (WINA). Available online: http://www.wina.org/ (accessed on 15 May 2017).
- Zigbee-Alliance. Zigbee Specifications. Available online: http://www.zigbee.org/ (accessed on 15 May 2017).
- Nobre, M.; Silva, I.; Guedes, L.A. Routing and scheduling algorithms for WirelessHARTNetworks: A survey. Sensors 2015, 15, 9703-9740. [CrossRef] [PubMed]
- Iordache, V.; Gheorghiu, R.A.; Minea, M. Analysis of interferences in data transmission for wireless communications implemented in vehicular environments. In Proceedings of the Federated Conference on Computer Science and Information Systems (FedCSIS), Prague, Czech Republic, 3-6 September 2017; pp. 849-852.
- Song, J.; Chen, D.; Nixon, M.; Lucas, M.; Pratt, W.; Han, S.; Mok, A. WirelessHART: Applying Wireless Technology in Real-Time Industrial Process Control. In Proceedings of the IEEE Real-Time and Embedded Technology and Applications Symposium(RTAS), St. Louis, MO, USA, 22-24 April 2008; pp. 377-386.
- Yassein, M.B.; Mardini, W.; Khalil, A. Smart homes automation using Z-wave protocol. In Proceedings of the International Conference on Engineering MIS (ICEMIS), Agadir, Morocco, 22-24 September 2016; pp. 1-6.
- Z-Wave Alliance-Home Management. Available online: https://z-wavealliance.org/home-management/ (accessed on 9 May 2018).
- ITU T-REC-G.9959: Short Range Narrow-Band Digital Radiocommunication Transceivers-PHY, MAC, SAR and LLC Layer Specifications. Available online: http://www.itu.int/rec/T-REC-G.9959-201501-I (accessed on 9 May 2018).
- Rathnayaka, A.J.D.; Potdar, V.M.; Kuruppu, S.J. Evaluation of wireless home automation technologies. In Proceedings of the 5th IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2011), Daejeon, Korea, 31 May-3 June 2011; pp. 76-81.
- Fouladi, B.; Ghanoun, S. Security evaluation of the Z-Wave wireless protocol. Black Hat USA 2013, 24, 1-2.
- Morais, A.; Cavalli, A. Route manipulation attack in wireless mesh networks. In Proceedings of the IEEE International Conference on Advanced Information Networking and Applications (AINA), Singapore, 22-25 March 2011; pp. 501-508.
- Gomez, C.; Oller, J.; Paradells, J. Overview and Evaluation of Bluetooth Low Energy: An Emerging Low-Power Wireless Technology. Sensors 2012, 12, 11734-11753. [CrossRef]
- Boujelben, M.; Youssef, H.; Mzid, R.; Abid, M. IKM-An Identity based Key Management Scheme for Heterogeneous Sensor Networks. JCM 2011, 6, 185-197. [CrossRef]
- Weightless Special Interest Group (SIG). Weightless-Setting the Standard for IoT. Available online: http: //www.weightless.org/ (accessed on 9 May 2018).
- Adelantado, F.; Vilajosana, X.; Tuset-Peiro, P.; Martinez, B.; Melia-Segui, J.; Watteyne, T. Understanding the Limits of LoRaWAN. IEEE Commun. Mag. 2017, 55, 34-40. [CrossRef]
- Weightless-SIG. Weightless Specification. Available online: http://www.weightless.org/about/weightless- specification (accessed on 9 May 2018).
- Webb, W. Understanding Weightless: Technology, Equipment, and Network Deployment for M2M Communications in White Space; Cambridge University Press: Cambridge, UK, 2012.
- Weightless Special Interest Group (SIG) Weightless-P System Specification. Available online: http://www. weightless.org (accessed on 8 April 2017).
- IEEE-Standard Association, IEEE802 Program-IEEE802.11: Wireless LANs. Available online: http://standards.ieee.org/about/get/802/802.11.html (accessed on 17 June 2017).
- IEEE-IEEE P802.11-Task Group AH-Meeting Update. Available online: http://www.ieee802.org/11/ Reports/tgah_update.htm (accessed on 5 May 2017).
- Adame, T.; Bel, A.; Bellalta, B.; Barcelo, J.; Oliver, M. IEEE 802.11AH: The WiFi approach for M2M communications. IEEE Wirel. Commun. 2014, 21, 144-152. [CrossRef]
- Ian, P. IEEE 802.11ah-Sub GHz Wi-Fi-Radio-Electronics.com. Available online: http://www.radio- electronics.com/info/wireless/wi-fi/ieee-802-11ah-sub-ghz-wifi.php (accessed on 30 May 2017).
- Fischer, M. IEEE 11-12/1338r0-Frequency Selective Transmission, November 2012. Available online: https://mentor.ieee.org/802.11/documents?is_dcn=FrequencySelectiveTransmission&is_group=00ah (accessed on 18 May 2018).
- Porat, R. IEEE 802.11-12/1322r0-Traveling Pilots-November 2012. Available online: https://mentor.ieee. org/802.11/documents?is_dcn=traveling%20pilots (accessed on 18 May 2018).
- Aust, S.; Prasad, R.V.; Niemegeers, I.G.M.M. IEEE 802.11ah: Advantages in Standards and Further Challenges for sub 1 GHz Wi-Fi; IEEE: Piscataway, NJ, USA, 2012; pp. 6885-6889.
- IEEE 802.11 Working Group. IEEE Standard for Information technology-Telecommunications and information exchange between systems Local and metropolitan area networks-Specific requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. In IEEE Std 802.11-2016 (Revision of IEEE Std 802.11-2012); IEEE: Piscataway, NJ, USA, 2016; pp. 1-3534.
- Park, M. IEEE 802.11ah: Energy efficient MAC protocols for long range wireless LAN. In Proceedings of the IEEE International Conference on Communications (ICC), Sydney, Australia, 10-14 June 2014; pp. 2388-2393.
- Sun, W.; Choi, M.; Choi, S. IEEE 802.11 ah: A long range 802.11 WLAN at sub 1 GHz. J. ICT Stand. 2013, 1, 83-108. [CrossRef]
- SigFox. Sigfox Technology Overview. Available online: http://www.sigfox.com/en/sigfox-iot-radio- technology (accessed on 6 June 2016).
- LoRaWAN TM 101-A Technical Introduction-LoRa Alliance TM . Available online: https://lora-alliance.org/ resource-hub/what-lorawantm (accessed on 5 June 2018).
- INGENU-RPMA Technology. Available online: https://www.ingenu.com/technology/rpma/ (accessed on 5 June 2018).
- Soltanmohammadi, E.; Ghavami, K.; Naraghi-Pour, M. A Survey of Traffic Issues in Machine-to-Machine Communications Over LTE. IEEE Internet Things J. 2016, 3, 865-884. [CrossRef]
- Rico-Alvarino, A.; Vajapeyam, M.; Xu, H.; Wang, X.; Blankenship, Y.; Bergman, J.; Tirronen, T.; Yavuz, E. An overview of 3GPP enhancements on machine to machine communications. IEEE Commun. Mag. 2016, 54, 14-21. [CrossRef]
- Ratasuk, R.; Vejlgaard, B.; Mangalvedhe, N.; Ghosh, A. NB-IoT system for M2M communication. In Proceedings of the IEEE Wireless Communications and Networking Conference, Doha, Qatar, 3-6 April 2016.
- Gozalvez, J. New 3GPP Standard for IoT [Mobile Radio].
- IEEE Veh. Technol. Mag. 2016, 11, 14-20. [CrossRef]
- Ratasuk, R.; Mangalvedhe, N.; Zhang, Y.; Robert, M.; Koskinen, J.P. Overview of narrowband IoT in LTE Rel-13. In Proceedings of the IEEE Conference on Standards for Communications and Networking (CSCN), Berlin, Germany, 31 October-2 November 2016; pp. 1-7.
- Zayas, A.D.; Merino, P. The 3GPP NB-IoT system architecture for the Internet of Things. In Proceedings of the IEEE International Conference on Communications Workshops (ICC Workshops), Paris, France, 21-25 May 2017; pp. 277-282.
- The 3rd Generation Partnership Project-3GPP TS36-211. Evolved Universal Terrestrial Radio Access (EUTRA) and Evolved Universal Terrestrial Radio Access Network (EUTRAN) Physical Channels and Modulation. Available online: https://www.arib.or.jp/english/html/overview/doc/STD-T104v4_10/5_ Appendix/Rel13/36/36211-d20.pdf (accessed on 6 June 2018).
- The 3rd Generation Partnership Project-3GPP TS36-212. Evolved Universal Terrestrial Radio Access (EUTRA) and Evolved Universal Terrestrial Radio Access Network (EUTRAN); Multiplexing and Channel Coding. Available online: https://www.etsi.org/deliver/etsi_ts/136200_136299/136212/14.02.00_60/ts_ 136212v140200p.pdf (accessed on 7 June 2018).
- The 3rd Generation Partnership Project-3GPP TS36-213. Evolved Universal Terrestrial Radio Access (EUTRA) and Evolved Universal Terrestrial Radio Access Network (EUTRAN); Physical Layer Procedures. Available online: https://www.etsi.org/deliver/etsi_ts/136200_136299/136213/14.02.00_60/ ts_136213v140200p.pdf (accessed on 13 June 2018).
- Dhafer, B.A.; Alam, M.M.; Le Moullec, Y.; Ben Hamida, E. Communication Challenges in on-Body and Body-to-Body Wearable Wireless Networks-A Connectivity Perspective. Technologies 2017, 5, 43.
- Panigrahi, B.; Rath, H.K.; Ramamohan, R.; Simha, A. Energy and spectral efficient direct Machine-to-Machine (M2M) communication for cellular Internet of Things (IoT) networks. In Proceedings of the 2016 International Conference on Internet of Things and Applications (IOTA), Pune, India, 22-24 January 2016; pp. 337-342.
- Wang, M.; Zhang, J.; Ren, B.; Yang, W.; Zou, J.; Hua, M.; You, X. The Evolution of LTE Physical Layer Control Channels. IEEE Commun. Surv. Tutor. 2016, 18, 1336-1354. [CrossRef]
- Ali, A.; Hamouda, W.; Uysal, M. Next generation M2M cellular networks: challenges and practical considerations. IEEE Commun. Mag. 2015, 53, 18-24. [CrossRef]
- Shafiq, M.Z.; Ji, L.; Liu, A.X.; Pang, J.; Wang, J. Large-Scale Measurement and Characterization of Cellular Machine-to-Machine Traffic. IEEE/ACM Transa. Netw. 2013, 21, 1960-1973. [CrossRef]
- Jian, X.; Zeng, X.; Jia, Y.; Zhang, L.; He, Y. Beta/M/1 Model for Machine Type Communication. IEEE Commun. Lett. 2013, 17, 584-587. [CrossRef]
- 37.868, G.T. 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on RAN Improvements for Machine-type Communications; (Release 11). Available online: http: //www.3gpp.org/ftp//Specs/archive/37_series/37.868/ (accessed on 21 June 2018).
- 23.888, G.T. 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; System improvements for Machine-Type Communications (MTC) (Release 11). Available online: http: //www.3gpp.org/ftp//Specs/archive/37_series/37.868/ (accessed on 2 July 2018).
- 22.368, G.T. 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Service requirements for Machine-Type Communications (MTC); Stage 1 (Release 14). Available online: http://www.3gpp.org/ftp//Specs/archive/23_series/23.888/ (accessed on 4 July 2018).
- 36.888, G.T. 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on provision of low-cost Machine-Type Communications (MTC) User Equipments (UEs) based on LTE (Release 12). Available online: http://www.3gpp.org/ftp//Specs/archive/36_series/36.868/ (accessed on 15 June 2018).
- Wang, Y.P.E.; Lin, X.; Adhikary, A.; Grovlen, A.; Sui, Y.; Blankenship, Y.; Bergman, J.; Razaghi, H.S. A Primer on 3GPP Narrowband Internet of Things. IEEE Commun. Mag. 2017, 55, 117-123. [CrossRef]
- Liberg, O.; Sundberg, M.; Wang, E.; Bergman, J.; Sachs, J. Cellular Internet of Things: Technologies, Standards, and Performance; Elsevier Academic Press: Cambridge, MA, USA, 2017.
- Wang, M.; Yang, W.; Zou, J.; Ren, B.; Hua, M.; Zhang, J.; You, X. Cellular machine-type communications: physical challenges and solutions. IEEE Wirel. Commun. 2016, 23, 126-135. [CrossRef]
- TS36-214, G. Third Generation Partnership Project. Technical Specification 36.214 v14.0.0, Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Layer; Measurements. Available online: https://www.etsi.org/ deliver/etsi_ts/136200_136299/136214/10.01.00_60/ts_136214v100100p.pdf (accessed on 22 July 2018).
- Semtech Acquires Wireless Long Range IP Provider Cycleo. 7 March 2012. Available online: https://investors.semtech.com/news-releases/news-release-details/semtech-acquires-wireless-long- range-ip-provider-cycleo (accessed on 5 July 2018).
- Libelium. Libelium-Connecting Sensors to the Cloud. Available online: http://www.libelium.com/ (accessed on 5 June 2017).
- Diario Oficial Boletín Oficial del Estado Ministerio de la Presidencia, R.c.l.C.e.I.G.d.E. Orden IET/787/2013, de 25 de Abril, por la que se Aprueba el Cuadro Nacional de Atribución de Frecuencias. Available online: https://www.boe.es/buscar/doc.php?id=BOE-A-2013-4845 (accessed on 23 July 2017).
- Semtech-Corporation. AN1200.22 LoRa Modulation Basics; Semtech-Corporation: Camarillo, CA, USA, 2015.
- Goursaud, C.; Gorce, J.M. Dedicated networks for IoT: PHY/MAC state of the art and challenges. EAI Endorsed Trans. Internet Things 2015. [CrossRef]
- Mikhaylov, K.; Petäjäjärvi, J.; Hänninen, T. Analysis of Capacity and Scalability of the LoRa Low Power Wide Area Network Technology. In Proceedings of the 22th European Wireless Conference on European Wireless, Oulu, Finland, 18-20 May 2016; pp. 1-6.
- Krupka, L.; Vojtech, L.; Neruda, M. The issue of LPWAN technology coexistence in IoT environment. In Proceedings of the IEEE 17th International Conference on Mechatronics-Mechatronika (ME), Prague, Czech Republic, 7-9 December 2016; pp. 1-8.
- Raza, U.; Kulkarni, P.; Sooriyabandara, M. Low Power Wide Area Networks: An Overview. IEEE Commun. Surv. Tutor. 2017, 19, 855-873. [CrossRef]
- Bor, M.; Vidler, J.E.; Roedig, U. LoRa for the Internet of Things. In Proceedings of the 2016 International Conference on Embedded Wireless Systems and Networks (EWSN '16), Graz, Austria, 15-17 February 2016; pp. 361-366.
- ETSI. ETSI-ERM TG28 LTN -TR 103 249 V1.1.1 (2017-10)-Low Throughput Network (LTN) Use Cases and System Characteristics; ETSI: Sophia Antipolis, France, 2017.
- Margelis, G.; Piechocki, R.; Kaleshi, D.; Thomas, P. Low Throughput Networks for the IoT: Lessons learned from industrial implementations. In Proceedings of the WF-IoT 2015 IEEE World Forum on Internet of Things, Milan, Italy, 14-16 December 2015; pp. 181-186.
- SigFox. SigFox Radio Access Network Technology. Available online: http://www.sigfox.com/en/sigfox- iot-radio-technology (accessed on 3 May 2018).
- Olyaei, B.B.; Pirskanen, J.; Raeesi, O.; Hazmi, A.; Valkama, M. Performance comparison between slotted IEEE 802.15.4 and IEEE 802.1 lah in IoT based applications. In Proceedings of the 2013 IEEE 9th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Lyon, France, 7-9 October 2013; pp. 332-337.
- Siekkinen, M.; Hiienkari, M.; Nurminen, J.K.; Nieminen, J. How low energy is bluetooth low energy? Comparative measurements with ZigBee/802.15.4. In Proceedings of the 2012 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), Paris, France, 1 April 2012; pp. 232-237.
- Ren, Y.; Oleshchuk, V.A.; Li, F.Y.; Ge, X. Security in mobile wireless sensor networks-A survey. J. Commun. 2011, 6, 128-142. [CrossRef]
- Al-Fuqaha, A.; Khreishah, A.; Guizani, M.; Rayes, A.; Mohammadi, M. Toward better horizontal integration among IoT services. IEEE Commun. Mag. 2015, 53, 72-79. [CrossRef]
- Oliveira, L.M.L.; Reis, J.; Rodrigues, J.J.P.C.; De Sousa, A.F. IOT based solution for home power energy monitoring and actuating. In Proceedings of the 2015 IEEE International Conference on Industrial Informatics (INDIN), Cambridge, UK, 22-24 July 2015; pp. 988-992.
- Bandyopadhyay, D.; Sen, J. Internet of things: Applications and challenges in technology and standardization. Wirel. Pers. Commun. 2011, 58, 49-69. [CrossRef]
- Paul, B.; Matin, M.A. A New Design Scheme for a Disperse Two Tiered Wireless Sensor Network. JCM 2011, 6, 198-203. [CrossRef]