Wavelength average velocity estimator for ultrasound elastography
2016, 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI)
https://doi.org/10.1109/ISBI.2016.7493438Abstract
A number of shear wave speed estimators have been developed for crawling wave sonoelastography. In this study, a new low-cost estimator based on spatial wavelength averaging along the slow-time domain is presented while assessing its performance through gelatin-based inclusion and homogeneous phantoms. Results showed favorable estimation mean accuracy (93.8%) on the homogeneous phantoms at different concentrations. However, underestimation is present in stiffer inclusions with size smaller than the true wavelength of the interference pattern (83.4% mean accuracy). Still, the new approach's differentiation of stiffness allows rapid visualization of a tissue as a qualitative imaging technique. Moreover, the estimator results are suitable for further processing as a reference mask implemented in several shear wave speed estimators.
References (13)
- REFERENCES
- L. Gao, K. J. Parker. "Imaging of the elastic properties of tissue -A review" Ultrasound Med. & Biol., vol. 22, no. 8, pp. 959-977, 1996.
- Z. Wu, L. S. Taylor, D. J. Rubens, and K. J. Parker, "Sonoelastographic imaging of interference patterns for estimation of the shear velocity distribution in biomaterials," J. Acoust. Soc. Am., vol. 120, no. 1, p. 535-545, 2006.
- B. Castaneda, L. An, S. Wu, L. Baxter, J. Yao, J. Joseph, K. Hoyt, J. Strang, D. Rubens and K. J. Parker. "Prostate Cancer Detection Using Crawling Wave Sonoelastography". Proc. SPIE, Medical Imaging 2009: Ultrasonic Imaging and Signal Processing, vol. 7265, no. 13.
- K. Hoyt, B. Castaneda, and K. J. Parker, "Two-dimensional sonoelastographic shear velocity imaging," Ultrasound Med. & Biol., vol. 34, no. 2, pp. 276-288, 2008.
- K. Hoyt, B. Castaneda, and K. J. Parker, "Muscle tissue characterization using quantitative sonoelastography: Preliminary results," Ultrasonics Symposium, IEEE, pp. 365-368, 2007.
- S. Rosenzweig, M. Palmeri, N. Rouze, S. Lipman, E. Kulbacki, J. Madden J, T. Polascik and K. Nightingale. "Comparison of concurrently acquired in vivo 3D ARFI and SWEI images of the prostate". Ultrasonics Symposium, IEEE. pp. 97-100, 2012.
- M. Zhang, B. Castaneda, Z. Wu, P. Nigwekar, J. V. Joseph, D. J. Rubens and K. J. Parker. "Congruence of imaging estimators and mechanical measurements of viscoelastic properties of soft tissues". Ultrasound in Med. & Biol., vol. 33, no. 10, pp. 1617-1631, 2007.
- K. Lin, J. McLaughlin, D. Renzi and A. Thomas. "Shear wave speed recovery in sonoelastography using crawling wave data" J. Acoust. Soc. Am., vol. 128, no. 1, pp. 88-97, 2010
- Z. Hah, C. Hazard, B. Mills, C. Barry, D. Rubens, K. J. Parker. "Integration of crawling waves in an ultrasound imaging system: Part 2. Signal processing and applications". Ultrasound Med Biol., vol. 38, pp. 312-323, 2012
- R. Rojas, J. Ormachea, A. Salo, P. Rodriguez, A. Lerner, and B. Castaneda, "Crawling waves speed estimation based on dominant component analysis amfm demodulation." in International Tissue Elasticity Conference (ITEC), p. 100, 2013.
- K. Miller, M. Rochwarger. "A Covariance Approach to Spectral Moment Estimation". IEEE Transactions on Information Theory, vol. 18, no. 5, 1972.
- J. Ormachea, R. Rojas, P. Rodriguez, R. Lavarello, K. J. Parker and B. Castaneda. "Shear Wave Speed Estimation from Crawling Wave Sonoelastography: A comparison between AM-FM Dominant Component Analysis and Phase Derivation Methods". IEEE International Ultrasonic Symposium, pp. 2327-2330, 2014