Academia.eduAcademia.edu

Outline

Wavelength average velocity estimator for ultrasound elastography

2016, 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI)

https://doi.org/10.1109/ISBI.2016.7493438

Abstract

A number of shear wave speed estimators have been developed for crawling wave sonoelastography. In this study, a new low-cost estimator based on spatial wavelength averaging along the slow-time domain is presented while assessing its performance through gelatin-based inclusion and homogeneous phantoms. Results showed favorable estimation mean accuracy (93.8%) on the homogeneous phantoms at different concentrations. However, underestimation is present in stiffer inclusions with size smaller than the true wavelength of the interference pattern (83.4% mean accuracy). Still, the new approach's differentiation of stiffness allows rapid visualization of a tissue as a qualitative imaging technique. Moreover, the estimator results are suitable for further processing as a reference mask implemented in several shear wave speed estimators.

References (13)

  1. REFERENCES
  2. L. Gao, K. J. Parker. "Imaging of the elastic properties of tissue -A review" Ultrasound Med. & Biol., vol. 22, no. 8, pp. 959-977, 1996.
  3. Z. Wu, L. S. Taylor, D. J. Rubens, and K. J. Parker, "Sonoelastographic imaging of interference patterns for estimation of the shear velocity distribution in biomaterials," J. Acoust. Soc. Am., vol. 120, no. 1, p. 535-545, 2006.
  4. B. Castaneda, L. An, S. Wu, L. Baxter, J. Yao, J. Joseph, K. Hoyt, J. Strang, D. Rubens and K. J. Parker. "Prostate Cancer Detection Using Crawling Wave Sonoelastography". Proc. SPIE, Medical Imaging 2009: Ultrasonic Imaging and Signal Processing, vol. 7265, no. 13.
  5. K. Hoyt, B. Castaneda, and K. J. Parker, "Two-dimensional sonoelastographic shear velocity imaging," Ultrasound Med. & Biol., vol. 34, no. 2, pp. 276-288, 2008.
  6. K. Hoyt, B. Castaneda, and K. J. Parker, "Muscle tissue characterization using quantitative sonoelastography: Preliminary results," Ultrasonics Symposium, IEEE, pp. 365-368, 2007.
  7. S. Rosenzweig, M. Palmeri, N. Rouze, S. Lipman, E. Kulbacki, J. Madden J, T. Polascik and K. Nightingale. "Comparison of concurrently acquired in vivo 3D ARFI and SWEI images of the prostate". Ultrasonics Symposium, IEEE. pp. 97-100, 2012.
  8. M. Zhang, B. Castaneda, Z. Wu, P. Nigwekar, J. V. Joseph, D. J. Rubens and K. J. Parker. "Congruence of imaging estimators and mechanical measurements of viscoelastic properties of soft tissues". Ultrasound in Med. & Biol., vol. 33, no. 10, pp. 1617-1631, 2007.
  9. K. Lin, J. McLaughlin, D. Renzi and A. Thomas. "Shear wave speed recovery in sonoelastography using crawling wave data" J. Acoust. Soc. Am., vol. 128, no. 1, pp. 88-97, 2010
  10. Z. Hah, C. Hazard, B. Mills, C. Barry, D. Rubens, K. J. Parker. "Integration of crawling waves in an ultrasound imaging system: Part 2. Signal processing and applications". Ultrasound Med Biol., vol. 38, pp. 312-323, 2012
  11. R. Rojas, J. Ormachea, A. Salo, P. Rodriguez, A. Lerner, and B. Castaneda, "Crawling waves speed estimation based on dominant component analysis amfm demodulation." in International Tissue Elasticity Conference (ITEC), p. 100, 2013.
  12. K. Miller, M. Rochwarger. "A Covariance Approach to Spectral Moment Estimation". IEEE Transactions on Information Theory, vol. 18, no. 5, 1972.
  13. J. Ormachea, R. Rojas, P. Rodriguez, R. Lavarello, K. J. Parker and B. Castaneda. "Shear Wave Speed Estimation from Crawling Wave Sonoelastography: A comparison between AM-FM Dominant Component Analysis and Phase Derivation Methods". IEEE International Ultrasonic Symposium, pp. 2327-2330, 2014