Academia.eduAcademia.edu

Outline

Nominal Anti-Unification

2015

https://doi.org/10.4230/LIPICS.RTA.2015.57

Abstract

We study nominal anti-unification, which is concerned with computing least general generalizations for given terms-in-context. In general, the problem does not have a least general solution, but if the set of atoms permitted in generalizations is finite, then there exists a least general generalization which is unique modulo variable renaming and alpha-equivalence. We present an algorithm that computes it. The algorithm relies on a subalgorithm that constructively decides equivariance between two terms-in-context. We prove soundness and completeness properties of both algorithms and analyze their complexity. Nominal anti-unification can be applied to problems where generalization of first-order terms is needed (inductive learning, clone detection, etc.), but bindings are involved.

References (31)

  1. María Alpuente, Santiago Escobar, José Meseguer, and Pedro Ojeda. A modular equational generalization algorithm. In Michael Hanus, editor, LOPSTR, volume 5438 of LNCS, pages 24-39. Springer, 2008.
  2. R TA 2 0 1 5
  3. 2 Alexander Baumgartner and Temur Kutsia. A library of anti-unification algorithms. In Eduardo Fermé and João Leite, editors, Logics in Artificial Intelligence -14th European Conference, JELIA 2014, Funchal, Madeira, Portugal, September 24-26, 2014. Proceedings, volume 8761 of Lecture Notes in Computer Science, pages 543-557. Springer, 2014.
  4. Alexander Baumgartner, Temur Kutsia, Jordi Levy, and Mateu Villaret. A variant of higher-order anti-unification. In Femke van Raamsdonk, editor, RTA, volume 21 of LIPIcs, pages 113-127. Schloss Dagstuhl -Leibniz-Zentrum fuer Informatik, 2013.
  5. Alexander Baumgartner, Temur Kutsia, Jordi Levy, and Mateu Villaret. Nominal Anti- Unification. Technical Report 15-03, RISC, JKU Linz, April 2015.
  6. Christophe Calvès. Complexity and Implementation of Nominal Algorithms. PhD thesis, King's College London, 2010.
  7. Christophe Calvès and Maribel Fernández. A polynomial nominal unification algorithm. Theor. Comput. Sci., 403(2-3):285-306, 2008.
  8. Christophe Calvès and Maribel Fernández. Matching and alpha-equivalence check for nom- inal terms. J. Comput. Syst. Sci., 76(5):283-301, 2010.
  9. James Cheney. Relating nominal and higher-order pattern unification. In Laurent Vigneron, editor, UNIF'05, LORIA A05-R-022, pages 105-119, 2005.
  10. James Cheney. Equivariant unification. JAR, 45(3):267-300, 2010.
  11. Gilles Dowek, Murdoch J. Gabbay, and Dominic P. Mulligan. Permissive nominal terms and their unification. In 24th Italian Conference on Computational Logic, CILC'09, 2009.
  12. Gilles Dowek, Murdoch James Gabbay, and Dominic P. Mulligan. Permissive nominal terms and their unification: an infinite, co-infinite approach to nominal techniques. Logic Journal of the IGPL, 18(6):769-822, 2010.
  13. Cao Feng and Stephen Muggleton. Towards inductive generalization in higher order logic. In Derek H. Sleeman and Peter Edwards, editors, ML, pages 154-162. Morgan Kaufmann, 1992.
  14. Murdoch Gabbay and Andrew M. Pitts. A new approach to abstract syntax with variable binding. Formal Asp. Comput., 13(3-5):341-363, 2002.
  15. Murdoch J. Gabbay. A Theory of Inductive Definitions with alpha-Equivalence. PhD thesis, University of Cambridge, UK, 2000.
  16. Murdoch J. Gabbay and Andrew M. Pitts. A new approach to abstract syntax involving binders. In LICS, pages 214-224. IEEE Computer Society, 1999.
  17. Ulf Krumnack, Angela Schwering, Helmar Gust, and Kai-Uwe Kühnberger. Restricted higher-order anti-unification for analogy making. In Mehmet A. Orgun and John Thornton, editors, Australian Conference on Artificial Intelligence, volume 4830 of LNCS, pages 273- 282. Springer, 2007.
  18. Temur Kutsia, Jordi Levy, and Mateu Villaret. Anti-unification for unranked terms and hedges. In Manfred Schmidt-Schauß, editor, RTA, volume 10 of LIPIcs, pages 219-234. Schloss Dagstuhl -Leibniz-Zentrum fuer Informatik, 2011.
  19. Jordi Levy and Mateu Villaret. Nominal unification from a higher-order perspective. In Andrei Voronkov, editor, RTA, volume 5117 of LNCS, pages 246-260. Springer, 2008.
  20. Jordi Levy and Mateu Villaret. An efficient nominal unification algorithm. In Christopher Lynch, editor, Proceedings of the 21st International Conference on Rewriting Techniques and Applications, RTA 2010, July 11-13, 2010, Edinburgh, Scottland, UK, volume 6 of LIPIcs, pages 209-226. Schloss Dagstuhl -Leibniz-Zentrum fuer Informatik, 2010.
  21. Jordi Levy and Mateu Villaret. Nominal unification from a higher-order perspective. ACM Trans. Comput. Log., 13(2):10, 2012.
  22. Jianguo Lu, John Mylopoulos, Masateru Harao, and Masami Hagiya. Higher order gener- alization and its application in program verification. Ann. Math. Artif. Intell., 28(1-4):107- 126, 2000.
  23. Frank Pfenning. Unification and anti-unification in the calculus of constructions. In LICS, pages 74-85. IEEE Computer Society, 1991.
  24. Gordon D. Plotkin. A note on inductive generalization. Machine Intel., 5(1):153-163, 1970.
  25. Luc De Raedt. Logical and Relational Learning. Springer, 2008.
  26. John C. Reynolds. Transformational systems and the algebraic structure of atomic formulas. Machine Intel., 5(1):135-151, 1970.
  27. Ute Schmid. Inductive Synthesis of Functional Programs, Universal Planning, Folding of Finite Programs, and Schema Abstraction by Analogical Reasoning, volume 2654 of LNCS. Springer, 2003.
  28. Christian Urban. Nominal techniques in Isabelle/HOL. J. Autom. Reasoning, 40(4):327- 356, 2008.
  29. Christian Urban and James Cheney. Avoiding equivariance in alpha-prolog. In Paweł Urzyczyn, editor, Typed Lambda Calculi and Applications, volume 3461 of LNCS, pages 401-416. Springer Berlin Heidelberg, 2005.
  30. Christian Urban, Andrew M. Pitts, and Murdoch J. Gabbay. Nominal unification. In Matthias Baaz and Johann A. Makowsky, editors, CSL, volume 2803 of LNCS, pages 513- 527. Springer, 2003.
  31. Christian Urban, Andrew M. Pitts, and Murdoch J. Gabbay. Nominal unification. Theor. Comput. Sci., 323(1-3):473-497, 2004.