Academia.eduAcademia.edu

Outline

Algebraic logic and logically-geometric

2013

Abstract

The main objective of this paper is to show that the notion of type which was developed within the frames of logic and model theory has deep ties with geometric properties of algebras. These ties go back and forth from universal algebraic geometry to the model theory through the machinery of algebraic logic. We show that types appear naturally as logical kernels in the Galois correspondence between filters in the Halmos algebra of first order formulas with equalities and elementary sets in the corresponding affine space.

References (42)

  1. M. Amer, T.S. Ahmed, Polyadic and cylindric algebras of sentences, (En- glish summary) MLQ Math. Log. Q. 52, (2006), no. 5, p. 444-449.
  2. H. Andreka, I. Nemeti, I. Sain, Algebraic logic. Handbook of philosophical logic, Kluwer Acad. Publ., Dordrecht, 2, (2001), p. 133-247.
  3. G.Baumslag, A. Myasnikov, V. Remeslennikov, Algebraic geometry over groups I, J. of Algebra, 219:1, (1999), 16-79.
  4. C.C. Chang, H.J. Keisler, Model Theory, North-Holland Publ. Co., (1973).
  5. E. Daniyarova, I. Kazachkov, V. Remeslennikov, Algebraic geometry over a free metabelian Lie algebra. I. U -algebras and universal classes. (Russian) Fundam. Prikl. Mat. 9, (2003), no. 3, p. 37-63; translation in J. Math. Sci. (N. Y.) 135 (2006), no. 5.
  6. E. Daniyarova, I. Kazachkov, V. Remeslennikov, Algebraic geometry over a free metabelian Lie algebra. II. The finite field case. (Russian) Fundam. Prikl. Mat. 9, (2003), no. 3, p. 65-87; translation in J. Math. Sci. (N. Y.) 135, (2006), no. 5.
  7. E. Daniyarova, A. Myasnikov, V. Remeslennikov, Unification theorems in algebraic geometry. Aspects of infinite groups, Algebra Discrete Math., 1, World Sci. Publ., Hackensack, NJ, (2008), 80-111.
  8. E.Daniyarova, A.Miasnikov, V.Remeslennikov, Algebraic geometry over algebraic structures II: Foundations, J. Algebra, submitted, arXiv:01002.3562v1 [math.AG]
  9. E.Daniyarova, A.Miasnikov, V.Remeslennikov, Algebraic geometry over al- gebraic structures III: Equationally Noetherian property and compactness, arXiv: 1002.4243v1 [math.AG]
  10. P.R. Halmos, Algebraic logic, New York, (1969). Papers [11]-[14] are reprinted in [10].
  11. P.R. Halmos, Algebraic logic. I. Monadic Boolean algebras. Compositio Math. 12, (1956), p. 217-249.
  12. P.R. Halmos, Algebraic logic. II. Homogeneous locally finite polyadic Boolean algebras of infinite degree. Fund. Math. 43, (1956), p. 255-325.
  13. P.R. Halmos, Algebraic logic. III. Predicates, terms, and operations in polyadic algebras. Trans. Amer. Math. Soc. 83, (1956), p, 430-470.
  14. P.R. Halmos, Algebraic logic. IV. Equality in polyadic algebras. Trans. Amer. Math. Soc. 86, (1957), 1-27.
  15. L. Henkin, J.D. Monk, A. Tarski, Cylindric Algebras, North-Holland Publ. Co. (1971, 1985).
  16. P.J. Higgins, Algebras with a scheme of operators, Math. Nachr. 27, (1963), p. 115-132.
  17. W. Hodges, Model theory, Encyclopedia of Mathematics and its Applica- tions 42, Cambridge University Press, Cambridge, (1993).
  18. J.M. Font, R. Jansana, D. Pigozzi, A survey of abstract algebraic logic. Ab- stract algebraic logic, Part II (Barcelona, 1997). Studia Logica 74, (2003), no. 1-2, p. 13-97.
  19. J.M. Font, R. Jansana, D. Pigozzi, Update to "A survey of abstract algebraic logic", Studia Logica 91, (2009), no. 1, p. 125-130,
  20. O. Kharlampovich, A. Myasnikov, Irreducible affine varieties over free groups I: Irreducibility of quadratic equations and Nullstellensatz, J. of Al- gebra, 200:2, (1998), 472-516.
  21. O. Kharlampovich, A. Myasnikov, Irreducible affine varieties over free groups II: Systems in triangular quasi-quadratic form and description of residually free groups, J. of Algebra, 200:2, (1998), 517-570.
  22. A. Kvaschuk, A. Myasnikov, V. Remeslennikov, Algebraic geometry over groups. III. Elements of model theory. J. Algebra, 288:1, (2005), p. 78-98.
  23. A.G. Kurosh, Lectures in general algebra. International Series of Mono- graphs in Pure and Applied Mathematics, Vol. 70 Pergamon Press, Oxford- Edinburgh-New York, 1965.
  24. L. LeBlanc, Nonhomogeneous polyadic algebras, Proc. Amer. Math. Soc. 13, (1962), p. 59-65.
  25. S. Mac Lane, Categories for the Working Mathematician, Springer-Verlag, (1971).
  26. A.I. Malcev Algebraic Systems, Springer-Verlag, (1973).
  27. Yu.I. Manin, A course in mathematical logic for mathematicians. Second edition. Chapters I-VIII translated from the Russian by Neal Koblitz. With new chapters by Boris Zilber and the author. Graduate Texts in Mathe- matics, 53. Springer, New York, 2010. xviii+384 pp.
  28. D. Marker, Model Theory: An Introduction, Springer Verlag, 2002, 360pp.
  29. A. Myasnikov, V. Remeslennikov, Algebraic geometry over groups II, Log- ical foundations, J. of Algebra, 234:1, (2000), 225-276.
  30. C. Perrin, R. Sklinos, Homogenety in the free group, arXiv: 1003.4095v1 [math GM], (2010).
  31. B. Plotkin, Algebraic geometry in First Order Logic, Sovremennaja Matem- atika and Applications 22 (2004), p. 16-62. Journal of Math. Sciences, 137, n.5, (2006), p. 5049-5097. http:// arxiv.org/ abs/ math GM/0312485.
  32. B. Plotkin, Isotyped algebras. Arxiv: math.LO/0812.3298v2 (2009). Sub- mitted.
  33. B. Plotkin, Seven lectures on the universal algebraic geometry, Preprint,(2002), Arxiv:math, GM/0204245, 87pp.
  34. B. Plotkin, Some results and problems related to universal algebraic geom- etry, International Journal of Algebra and Computation, 17(5/6), (2007), p. 1133-1164.
  35. B. Plotkin, Universal algebra, algebraic logic and databases. Kluwer Acad. Publ., 1994.
  36. B. Plotkin, G. Zhitomirski, Automorphisms of categories of free algebras of some varieties, J. Algebra, 306, (2006), no. 2, p. 344-367.
  37. B. Plotkin, G. Zhitomirski, On automorphisms of categories of universal algebras, Internat. J. Algebra Comput. 17, (2007), no. 5-6, p. 1115-1132.
  38. B. Plotkin, G. Zhitomirski, Some logical invariants of algebras and logical relations between algebras, Algebra and Analysis, 19:5, (2007), p. 214-245, St. Peterburg Math. J., 19:5, (2008), p. 859-879.
  39. B. Poizat, A course in model theory. An introduction to contemporary math- ematical logic. Translated from the French by Moses Klein and revised by the author. Universitext. Springer-Verlag, New York, (2000), xxxii+443 pp.
  40. E. Rips, Z. Sela, Cyclyc splittings of the finitely presented groups and the canonical JSJ decomposition, Ann. of Math., 146:1 , (1997), p. 53-109.
  41. Z. Sela, Diophantine geometry over groups I, IHES, 93, (2001), p. 31-105.
  42. I.R. Shafarevich, Basic algebraic geometry, Berlin, Springer-Verlag, (1974).