Academia.eduAcademia.edu

Outline

Stratifications of cellular patterns

https://doi.org/10.48550/ARXIV.COND-MAT/0211293

Abstract

Geometrically, foams or covalent graphs can be decomposed into successive layers or strata. Disorder of the underlying structure imposes a characteristic roughening of the layers. Our main results are hysteresis and convergence in the layer sequences. 1) If the direction of construction is reversed, the layers are different in the up and down sequences (irreversibility); nevertheless, under suitable but non-restrictive conditions, the layers come back, exactly, to the initial profile, a hysteresis phenomenon. 2) Layer sequences based on different initial conditions (e.g. different starting cells) converge, at least in the cylindrical geometry. Jogs in layers may be represented as pairs of opposite dislocations, moving erratically due to the disorder of the underlying structure and ending up annihilating when colliding.

References (23)

  1. D. Weaire, N. Rivier, Contemp. Phys. 25, 59 (1984)
  2. S. Hutzler, D. Weaire, The Physics of Foams, Oxford U.P. (1998)
  3. T. Aste, N. Rivier, J. Phys. A: Math. Gen. 28, 1381-1398 (1995)
  4. T. Aste, D. Boose, N. Rivier, Phys. Rev. E 53, 6181 (1996) N. Rivier, T. Aste, Phil. Trans. R. Soc. London A 354, 2055 (1996)
  5. T. Aste, in Foams and Emulsions ed. by J.F. Sadoc and N. Rivier, Kluwer (1999), p. 497
  6. B. Dubertret, N. Rivier, M.A. Peshkin, J. Phys. A: Math. Gen. 31, 879-900 (1998)
  7. H.M. Ohlenbush, T. Aste, B. Dubertret, N. Rivier, Eur. Phys. J. B 2, 211-220 (1998)
  8. H.M. Ohlenbush, N. Rivier, T. Aste, B. Dubertret, DI- MACS Series in Discrete Mathematics and Theoretical Computer Science 51, 279-292 (2000).
  9. C. Oguey, N. Rivier, J. Phys. A: Math. Gen. 34, 6225 (2001)
  10. C. Godrèche ed.: Solids far from Equilibrium, Cambridge U.P. (1991)
  11. M. A. Fortes, P. Pina, Phil. Mag. B 67, 263 (1993)
  12. M. O'Keeffe, Zeits. f. Kristallogr. 210, 905-908 (1995) M. O'Keeffe, S.T. Hyde, Zeits. f. Kristallogr. 211, 73-78 (1996)
  13. J.H. Conway, J.A. Sloane, Proc. R. Soc. Lond. A 453, 2369 (1997)
  14. M. Baake, U. Grimm, Zeits. f. Kristallogr. 212, 253-256 (1997)
  15. G. Binkmann, M. Deza, Liens 98-13 (1998), reprinted in Hyperspace 9, 28 (2000) (A n-corona, as used in this work, is equivalent to the union of layers j = 0, . . . , n)
  16. M. A. Fortes J Phys A 28, 1055 (1995)
  17. G. Le Caer, J. Phys A 24 1307, 4655 (1991) G. Le Caer, R. Delannay, J. Phys. A. 26, 3931 (1993);
  18. J. Phys. I France 5, 1417 (1995)
  19. G. Schliecker, Phys. Rev. E 57 R1219 (1998)
  20. G. Toulouse, Comm. Phys. 2, 115 (1977) J. Villain, J. Phys. C Solid State Phys. 10, 1717 (1977) Mattis model: D.C. Mattis, Phys. Letters A 56, 421 (1976) Review: N. Rivier, in Geometry in Condensed Matter Physics, ed. by J-F. Sadoc, World Scient. 1990, pp. 3-88
  21. M. Kardar, G. Parisi, Y.C. Zhang, Phys. Rev. Lett. 56, 889 (1986)
  22. C. Oguey, in preparation...
  23. M.A. Peshkin, K.J. Strandburg, N. Rivier, Phys. Rev. Lett. 67, 1803 (1991)