Academia.eduAcademia.edu

Outline

Mathematical Decision Model for Reverse Supply Chains Inventory

2014, International Journal of Computers Communications & Control

Abstract

In the reverse supply chain inventory theory, inventory models are concerned with the demand of reusable parts, stock replenishment, ordering cycle, delivery lead time, number of disassembled products, ordering costs. The particularity of these models consists in the occurrence of high uncertainties of the quantity and quality of the returned products and resulting parts. To overcome the problem, an inventory model that incorporates decision variables at proactive and reactive levels is derived and discussed in this paper.

References (22)

  1. Gupta S. M. (2013); Reverse Supply Chains: Issues and Analysis, CRC Press, Taylor&Francis
  2. Fleischmann M, Bloemhof-Ruwaard J. M., Dekker R. (1997); Quantitative Models for Reverse Logistics: A Review, European Journal of Operational Research , 103: 1-17.
  3. Kiesmuller G P, Scherer C W (2003); Computational issues in a stochastic finite horizon one product recovery inventory model, European Journal of Operational Research 146(3): 553-579.
  4. Inderfurth K, Langella I. M. (2006); Heuristics for solving Disassembly to order Problems with Stochastic Yields, OR Spectrum, 28 (1): 73-99
  5. Imtanavanich P, Gupta S. M. (2006);
  6. Calculating Disassembly Yields in a Multicriteria De- cision Making Environment for a Disassembly to Order System, Application of Management Science, Elsevier Science, Amsterdam, 12: 109-125
  7. Bayindira Z.P., Dekkerb R, Porrasb E. (2006); Determination of recovery effort for a prob- abilistic recovery system under various inventory control policies, The International Journal of Management Science, 34: 571 -584.
  8. Inderfurth K, Langella I. M., (2008);
  9. Planning Disassembly for Remanufacture to Order Systems, Environment Conscious Manufacturing, Gupta and Lambert eds.,CRC Press, Boca Raton, Fla.
  10. Langella I. M (2007), Planning Demand Driving Disassembly for Remanufacturing, Deutscher Universitäts-Verlag.
  11. Kongar E, Gupta S M, (2009) Solving the Disassembly to Order Problem Using Linear Physical Programming, International Journal of Mathematics in Operational Research, 1(4): 504-531.
  12. Gupta , S.M., Ilgin, M. I. ( 2012), Physical Programming; A review of the state of the art, Studies in Informatics and Control, 21(4): 349-366.
  13. Ahiska S S., King R E (2010); Inventory optimization in a one product recoverable manu- facturing system, International Journal of Production Economics, 124(1): 11-19.
  14. Godichaud M. (2010);
  15. Outils d'aide à la décision pour la sélection des filières de revalori- sation des produits issus de la déconstruction des systemes en fin de vie. Thèse de doctorat, Université de Toulouse.
  16. Duta L., Addouche S.A. (2012); Dynamic Bayesian Network for Decision Aided Disassembly Planning, Studies in Computational Intelligence, Springer, 402: 143-154.
  17. Blumenfeld, D.E. (2008), Operations Research Calculation Handbook, CRC Press, Taylor and Francis Group.
  18. Ghorbel N., Duta L., Addouche S.A., El Mhamedi A. (2011), Decision aided tool for sustain- able inventory control, The 21th International Conference on Production Research, Sttutgart, Germany.
  19. Conrady S, (2011), Introduction to Bayesian Networks, Conrady Applied Science, LLC - Bayesia's North American Partner for Sales and Consulting.
  20. FICO XPRESS Optimization Suite (http://www.fico.com/en/products/fico-xpress- optimization-suite/)
  21. Filip F.G. (2008), Decision support and control for large-scale complex systems. Annual Reviews in Control, 32(1):61-70.
  22. Zamfirescu C.B., Duta L., Iantovics B. (2010),On Investigating the Cognitive Complexity of Designing the Group Decision Process, Studies in Informatics and Control, 19 (3):263-27.