Academia.eduAcademia.edu

Outline

Deontic Logic Programs (Extended Abstract)

2013

Abstract

Deontic logic programming (DLP) is a framework combining deontic logic and non-monotonic logic programming, and it is useful to represent and reason about normative systems. In this paper we propose an implementation for reasoning in DLP that combines, in a modular way, a reasoner for deontic logic with a reasoner for stable model semantics.

References (10)

  1. REFERENCES
  2. A. Artosi, P. Cattabriga, and G. Governatori. Ked: A deontic theorem prover. In Workshop on Legal Appl. of Logic Programming, pages 60-76. IDG, 1994.
  3. B. Chellas. Modal Logic: An Introduction. Cambridge University Press, 1980.
  4. M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. clasp : A conflict-driven answer set solver. In C. Baral, G. Brewka, and J. S. Schlipf, editors, LPNMR, volume 4483 of Lecture Notes in Computer Science, pages 260-265. Springer, 2007.
  5. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. pages 1070-1080. MIT Press, 1988.
  6. R. Gonçalves and J. J. Alferes. An embedding of input-output logic in deontic logic programs. In Deontic Logic in Computer Science, 11th International Conference, DEON 2012, Bergen, Norway, July 16-18, 2012. Proceedings, To appear, 2012.
  7. R. Gonçalves and J. J. Alferes. Specifying and reasoning about normative systems in deontic logic programming. In W. van der Hoek, L. Padgham, V. Conitzer, and M. Winikoff, editors, AAMAS, pages 1423-1424. IFAAMAS, 2012.
  8. J. W. Lloyd. Foundations of Logic Programming. Springer, 1984.
  9. D. Makinson and L. van der Torre. Constraints for input/output logics. Journal of Philosophical Logic, 30:155-185, 2001.
  10. G. H. von Wright. Deontic logic. Mind, 60:1-15, 1951.