Drone Tracking Using an Innovative UKF
2017, Lecture Notes in Computer Science
https://doi.org/10.1007/978-3-319-68445-1_35Abstract
This paper addresses the drone tracking problem, using a model based on the Frenet-Serret frame. A kinematic model in 2D, representing intrinsic coordinates of the drone is used. The tracking problem is tackled using two recent filtering methods. On the one hand, the Invariant Extended Kalman Filter (IEKF), introduced in [1] is tested, and on the other hand, the second step of the filtering algorithm, i.e. the update step of the IEKF is replaced by the update step of the Unscented Kalman Filter (UKF), introduced in [2]. These two filters are compared to the well known Extended Kalman Filter. The estimation precision of all three algorithms are computed on a real drone tracking problem.
References (15)
- Barrau, A., Bonnabel, S.: The invariant extended Kalman filter as a stable observer. IEEE Trans. Autom. Control 62, 1797-1812 (2017)
- Julier, S.J., Uhlmann, J.K.: Unscented filtering and nonlinear estimation. Proc. IEEE 92(3), 401-422 (2004)
- Bunch, P., Godsill, S.: Dynamical models for tracking with the variable rate particle filter. In: 2012 15th International Conference on Information Fusion (FUSION), pp. 1769-1775. IEEE (2012)
- Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1), 35-45 (1960)
- Bar-Shalom, Y., Li, X., Kirubarajan, T.: Estimation with Applications to Track- ing and Navigation: Theory Algorithms and Software. Wiley, New York (2004). https://books.google.fr/books?id=xz9nQ4wdXG4C
- Brossard, M., Bonnabel, S., Condomines, J.-P.: Unscented Kalman filtering on lie groups. soumis à IROS (2017). https://hal.archives-ouvertes.fr/hal-01489204
- Gustafsson, F., Gunnarsson, F., Bergman, N., Forssell, U., Jansson, J., Karlsson, R., Nordlund, P.-J.: Particle filters for positioning, navigation, and tracking. IEEE Trans. Signal Process. 50(2), 425-437 (2002)
- Doucet, A., De Freitas, N., Murphy, K., Russell, S.: Rao-blackwellised particle fil- tering for dynamic bayesian networks. In: Proceedings of the Sixteenth conference on Uncertainty in Artificial Intelligence, pp. 176-183. Morgan Kaufmann Publish- ers Inc. (2000)
- Pilté, M., Bonnabel, S., Barbaresco, F.: An innovative nonlinear filter for radar kinematic estimation of maneuvering targets in 2D. In: 18th International Radar Symposium (IRS) (2017)
- Barrau, A., Bonnabel, S.: Intrinsic filtering on lie groups with applications to atti- tude estimation. IEEE Trans. Autom. Control 60(2), 436-449 (2015)
- Eade, E.: Lie groups for 2d and 3d transformations. http://ethaneade.com/lie.pdf. Accessed Dec 2013
- Julier, S.J., Uhlmann, J.K.: New extension of the kalman to nonlinear sys- tems. In: AeroSense 1997, pp. 182-193. International Society for Optics and Pho- tonics (1997)
- Pilté, M., Bonnabel, S., Barbaresco, F.: Tracking the Frenet-Serret frame associ- ated to a highly maneuvering target in 3D. working paper or preprint. https:// hal-mines-paristech.archives-ouvertes.fr/hal-01568908
- Abbeel, P., Coates, A., Montemerlo, M., Ng, A.Y., Thrun, S.: Discriminative train- ing of Kalman filters. In: Robotics: Science and systems, vol. 2, p. 1 (2005)
- Castella, F.R.: An adaptive two-dimensional Kalman tracking filter. IEEE Trans. Aerosp. Electron. Syst. AES-16(6), 822-829 (1980)