Impact of spherical projectiles into a viscoplastic fluid
2011, Physical Review E
https://doi.org/10.1103/PHYSREVE.84.031403Abstract
We study the behavior of a yield-stress fluid following the impact of a vertically falling sphere. Since the impact produces shear stresses larger than the yield stress, the material in the vicinity of the impact becomes fluidized. The sphere entrains air when it enters the fluid, and the resulting cavity pinches off below the surface. The upper part of this cavity then rebounds upward. For sufficiently fast impacts, a vertical jet is produced by the cavity collapse. While many aspects of this process are similar to that in Newtonian fluids or granular materials, the rheological properties of our target material change the scaling of the cavity pinch-off depth and have a dramatic effect on the height of the jets. The material returns to a solid-like behavior once the stresses due to the impact have relaxed to below the yield stress, leaving a crater in the surface of the material. We find that the diameter of this crater depends nonmonotonically on the impact speed. The crater shape also changes with speed, reflecting the dynamics of the impact process.
References (57)
- H. J. Melosh, Impact Cratering: A Geologic Process (Oxford University Press, New York, 1989).
- M. A. Worthington, A Study of Splashes (Longman, Green, London, 1908).
- J. W. Glasheen and T. A. McMahon, Phys. Fluids 8, 2078 (1996).
- S. Gaudet, Phys. Fluids 10, 2489 (1998).
- R. Bergmann, D. van der Meer, M. Stijnman, M. Sandtke, A. Prosperetti, and D. Lohse, Phys. Rev. Lett. 96, 154505 (2006).
- J. M. Cheny and K. Walters, J. Non-Newtonian Fluid Mech. 67, 125 (1996).
- J.-M. Cheny and K. Walters, J. Non-Newtonian Fluid Mech. 86, 185 (1999).
- A. Bisighini, G. E. Cossali, C. Tropea, and I. V. Roisman, Phys. Rev. E 82, 036319 (2010).
- A. I. Fedorchenko and A. B. Wang, Phys. Fluids 16, 1349 (2004).
- A. L. Yarin, Annu. Rev. Fluid Mech. 38, 159 (2006).
- A. Prosperetti and H. N. Oguz, Annu. Rev. Fluid Mech. 25, 577 (1993).
- J. C. Amato and R. E. Williams, Am. J. Phys. 66, 141 (1988).
- S. T. Thoroddsen and A. Q. Shen, Phys. Fluids 13, 4 (2001).
- J. S. Uehara, M. A. Ambroso, R. P. Ojha, and D. J. Durian, Phys. Rev. Lett. 90, 194301 (2003).
- A. M. Walsh, K. E. Holloway, P. Habdas, and J. R. de Bruyn, Phys. Rev. Lett. 91, 104301 (2003).
- D. Lohse, R. Bergmann, R. Mikkelsen, C. Zeilstra, D. van der Meer, M. Versluis, K. van der Weele, M. van der Hoef, and H. Kuipers, Phys. Rev. Lett. 93, 198003 (2004).
- K. A. Newhall and D. J. Durian, Phys. Rev. E 68, 060301 (2003).
- J. R. de Bruyn and A. M. Walsh, Can. J. Phys. 82, 439 (2004).
- M. P. Ciamarra, A. H. Lara, A. T. Lee, D. I. Goldman, I. Vishik, and H. L. Swinney, Phys. Rev. Lett. 92, 194301 (2004).
- J. R. Royer, E. I. Corwin, A. Flior, M.-L. Cordero, M. L. Rivers, P. J. Eng, and H. M. Jaeger, Nature Phys. 1, 164 (2005).
- M. A. Ambroso, C. R. Santore, A. R. Abate, and D. J. Durian, Phys. Rev. E 71, 051305 (2005).
- M. A. Ambroso, R. D. Kamien, and D. J. Durian, Phys. Rev. E 72, 041305 (2005).
- L. S. Tsimring and D. Volfson, in Powders and Grains 2005, edited by H. J. Herrmann, R. Garcia-Rojo, and S. McNamara (Balkema, Rotterdam, 2005), Vol. 2, p. 1215.
- H. Katsuragi and D. J. Durian, Nature Phys. 3, 420 (2007).
- S. J. de Vet and J. R. de Bruyn, Phys. Rev. E 76, 041306 (2007).
- S. Gekle, A. van der Bos, R. Bergmann, D. van der Meer, and D. Lohse, Phys. Rev. Lett. 100, 084502 (2008).
- S. Gekle, J. M. Gordillo, D. van der Meer, and D. Lohse, Phys. Rev. Lett. 102, 034502 (2009).
- S. Gekle, I. R. Peters, J. M. Gordillo, D. van der Meer, and D. Lohse, Phys. Rev. Lett. 104, 024501 (2010).
- J. O. Marston, J. P. K. Seville, Y.-V. Cheun, A. Ingram, S. P. Decent, and M. J. H. Simmons, Phys. Fluids 20, 023301 (2008).
- R. Greeley, J. Fink, D. E. Gault, D. B. Snyder, J. E. Guest, and P. H. Shultz, Proc. Lunar Planet. Sci. Conf. 11, 2075 (1980).
- H. J. Melosh, Proc. Lunar Planet. Sci. Conf. 12, 702 (1981).
- J. H. Fink, R. Greeley, and D. E. Gault, Proc. Lunar Planet. Sci. 12B, 1649 (1981).
- D. E. Gault and R. Greeley, Icarus 34, 486 (1978).
- Lubrizol Technical Data Sheet No. 216 (unpublished).
- R. J. Ketz Jr., R. K. Prud'homme, and W. W. Graessley, Rheol. Acta 27, 531 (1988).
- I. Gutowski, D. Lee, J. R. de Bruyn, and B. Frisken (unpub- lished).
- H. Tabuteau, P. Coussot, and J. R. de Bruyn, J. Rheol. 51, 125 (2007).
- F. K. Oppong, L. Rubatat, B. J. Frisken, A. E. Bailey, and J. R. de Bruyn, Phys. Rev. E 73, 041405 (2006).
- F. K. Oppong, and J. R. de Bruyn, J. Non-Newtonian Fluid Mech. 142, 104 (2007).
- J.-M. Piau, J. Non-Newtonian Fluid Mech. 144, 1 (2007).
- V. Bertola, J. Phys. Condens. Matter 21, 035107 (2009).
- H. Tabuteau, D. Sikorski, and J. R. de Bruyn, Phys. Rev. E 75, 012201 (2007).
- B. Akers and A. Belmote, J. Non-Newtonian Fluid Mech. 135, 97 (2006).
- J. C. Burton, R. Waldrep, and P. Taborek, Phys. Rev. Lett. 94, 184502 (2005).
- A. Beris, J. A. Tsamopoulos, R. C. Armstrong, and R. A. Brown, J. Fluid Mech. 158, 245 (1985).
- D. D. Attapattu, R. P. Chhabra, and P. H. T. Uhlherr, J. Non- Newtonian Fluid Mech. 38, 31 (1990).
- D. Deglo de Besses, A. Magnin, and P. Jay, AIChE J. 50, 2627 (2004).
- J. R. de Bruyn, Rheol. Acta 44, 150 (2004).
- D. Sikorski, H. Tabuteau, and J. R. de Bruyn, J. Non-Newtonian Fluid Mech. 159, 10 (2009).
- M. Lee, R. G. Longoria, and D. E. Wilson, Phys. Fluids 9, 540 (1997).
- J. Blackery and E. Mitsoulis, J. Non-Newtonian Fluid Mech. 70, 59 (1997).
- J. E. Hogrefe, N. L. Pelley, C. L. Goodridge, W. T. Shi, H. G. E. Hentschel, and D. P. Lathrop, Physica D 123, 183 (1998).
- H. N. Oguz and A. Prosperetti, J. Fluid Mech. 257, 111 (1993).
- J. M. Gordillo, A. Sevilla, J. Rodríguez-Rodríguez, and C. Martínez-Bazán, Phys. Rev. Lett. 95, 194501 (2005).
- J. Eggers, M. A. Fontelos, D. Leppinen, and J. H. Snoeijer, Phys. Rev. Lett. 98, 094502 (2007).
- S. T. Thoroddsen, T. G. Etoh, and K. Takehara, Phys. Fluids 19, 042101 (2007).
- C. Duez, C. Ybert, C. Clanet, and L. Bocquet, Nature Phys. 3, 180 (2007).