Representations of the generalized Lie algebra
1998, Journal of Physics A: Mathematical and General
https://doi.org/10.1088/0305-4470/31/31/010Abstract
We construct finite-dimensional irreducible representations of two quantum algebras related to the generalized Lie algebra sl(2) q introduced by Lyubashenko and the second named author. We consider separately the cases of q generic and q at roots of unity. Some of the representations have no classical analog even for generic q. Some of the representations have no analog to the finite-dimensional representations of the quantised enveloping algebra U q (sl(2)), while in those that do there are different matrix elements.
References (14)
- S. Majid, Quantum and braided Lie algebras, J. Geom. Phys. 13 (1994) 307-356.
- G.W. Delius and A. Hüffmann, On quantum Lie algebras and quantum root systems, J. Phys. A: Math. Gen. 29 (1996) 1703-1722.
- G.W. Delius, A. Hüffmann, M. D. Gould and Y.-Z. Zhang, Quantum Lie algebras associated to U q (gl n ) and U q (sl n ), J. Phys. A: Math. Gen. 29 (1996) 5611-5617.
- V. Lyubashenko and A. Sudbery, Quantum Lie Algebras of Type A n , q-alg/9510004, J. Math. Phys., to appear.
- A. Sudbery, The quantum orthogonal mystery, in: "Quantum Groups: Formalism and Applications", eds. J. Lukierski et al (Polish Scientific Publishers PWN, 1995), pp. 303-316.
- A. Sudbery, SU q (n) gauge theory, Phys. Lett. 375B (1996) 75-80.
- A. Sudbery, Quantum-group gauge theory, in: "Quantum Group Symposium at Group21", Proceedings of a Symposium at the XXI Intern. Colloquium on Group Theoretical Methods in Physics, (Goslar, July 1996), eds. H.-D. Doebner et al (Heron Press, Sofia, 1997) pp. 45-52.
- I.N. Bernstein, I.M. Gel'fand and S.I. Gel'fand, Structure of representations generated by highest weight vectors. Funkts. Anal. Prilozh. 5 (1), 1-9 (1971); English translation: Funkt. Anal. Appl. 5, 1-8 (1971)
- N.N. Shapovalov, On a bilinear form on the universal enveloping algebra of a complex semisimple Lie algebra, Funkts. Anal. Prilozh. 6 (4) (1972) 65-70; English translation: Funkt. Anal. Appl. 6 (1972) 307-312.
- V.K. Dobrev, Multiplet classification of highest weight modules over quantum uni- versal enveloping algebras : the U q (sl(3, C I)) example, in: Proceedings of the Interna- tional Group Theory Conference (St. Andrews, 1989), eds. C.M. Campbell et al, Vol. 1, London Math. Soc. Lecture Note Series 159 (Cambridge University Press, 1991) pp. 87-104.
- V.G. Drinfeld, Hopf algebras and the quantum Yang-Baxter equation, Dokl. Akad. Nauk SSSR 283 (1985) 1060-1064 (in Russian); English translation: Soviet. Math. Dokl. 32 (1985) 254-258; Quantum groups, in: Proceedings ICM 1986, (MSRI, Berke- ley, 1987) pp. 798-820.
- M. Jimbo, A q-difference analogue of U (G) and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985) 63-69; A q-difference analogue of U (gl(N + 1)), Hecke algebras and the Yang-Baxter equation, Lett. Math. Phys. 11 (1986) 247-252.
- P.P. Kulish and N.Yu. Reshetikhin, The quantum linear problem for the sine-Gordon equation and higher representations, Zap. Nauch. Semin. LOMI 101 (1981) 101-110 (in Russian); English translation: J. Soviet. Math. 23 (1983) 2435-2441.
- E.K. Sklyanin, On an algebra generated by quadratic relations, Uspekhi Mat. Nauk 40 (1985) 214 (in Russian).