Challenges in Fluid Flow Simulations Using Exascale Computing
2020, SN Computer Science
https://doi.org/10.1007/S42979-020-00184-1Abstract
In this paper, we briefly discuss the challenges in porting hydrodynamic codes to futuristic exascale HPC systems. In particular, we sketch the computational complexities of finite difference (FD) method, pseudo-spectral method, and fast Fourier transform (FFT). The global data communication among the compute cores brings down the efficiency of pseudo-spectral codes and FFT. A FD solver involves relatively lower data communication. However, an incompressible FD flow solver has a pressure Poisson equation, whose computation in multigrid scheme is quite expensive. Hence, a comparative study between the two sets of solvers on exascale system would be valuable. In this paper, we report a comparative performance analysis between a FD code and a spectral code on a relatively smaller grid using 1024 compute cores of Shaheen II; here, the FD code yields comparable accuracy to the spectral code, but it is relatively slower. The above features need to be retested on much larger grids with many more processors.
References (45)
- Albin N, Bruno OP. A spectral FC solver for the compressible Navier-Stokes equations in general domains I: explicit time- stepping. J Comput Phys. 2011;230(16):6248-70.
- Anderson JD. Computational Fluid Dynamics: The Basics with Applications. New York: McGraw-Hill; 1995.
- Arora R. Conquering Big Data with High Performance Comput- ing. Berlin: Springer; 2016.
- Aseeri S et al. Solving the Klein-Gordon equation using Fourier spectral methods: a benchmark test for computer performance. In: Symposium on High Performance Computing. Society for Com- puter Simulation International 2015; p. 182-91.
- Balaji V. Scientific computing in the age of complexity. XRDS. 2013;19(3):12-7.
- Balsara DS, Balsara D, Jongsoo K, Mac Low MM, Mathews GJ. Amplification of interstellar magnetic fields by supernova-driven turbulence. ApJ. 2004;617:339-49.
- Balsara DS. Higher-order accurate space-time schemes for com- putational astrophysics-Part I: finite volume methods. Liv Rev Comput Astrophys. 2017;3(1):1-138.
- Boyd JP. Chebyshev and Fourier spectral methods. second revised ed. New York: Dover Publications; 2003.
- Bryan GL, Norman ML, O'Shea BW, Abel T, Wise JH, Turk MJ, Reynolds DR, Collins DC, Wang P, Skillman SW, Smith B, Harkness RP, Bordner J, Kim J, Kuhlen M, Xu H, Goldbaum N, Hummels C, Kritsuk AG, Tasker E, Skory S, Simpson CM, Hahn O, Oishi JS, So GC, Zhao F, Cen R, Li Y, The Enzo Collaboration. ENZO: an adaptive mesh refinement code for astrophysics. ApJS. 2014;211(2):19-52.
- Canuto C, Hussaini MY, Quarteroni A, Zang TA. Spectral meth- ods in fluid dynamics. Berlin: Springer; 1988.
- Chatterjee AG, Verma MK, Kumar A, Samtaney R, Hadri B, Khurram R. Scaling of a fast Fourier transform and a pseudo- spectral fluid solver up to 196608 cores. J Parallel Distrib Comput. 2018;113:77-91.
- Czechowski K, Battaglino C, McClanahan C, Iyer K, Yeung PK, Vuduc R. On the communication complexity of 3D FFTs and its implications for Exascale. In: Proceedings of the 26th ACM international conference on Supercomputing. ACM, New York, 2012; p. 205-14.
- Deville M, Fischer PF, Mund EH. High-order methods for incom- pressible fluid flow. Cambridge: Cambridge University Press; 2004.
- Ferziger JH, Peric M. Computational methods for fluid dynamics. 3rd ed. Berlin: Springer; 2001.
- Fornberg B. The pseudospectral method: comparisons with finite difference for the elastic wave equation. Geophysics. 1987;52:483-501.
- Frigo M, Johnson SG. The design and implementation of FFTW3. Proc IEEE. 2005;93(2):216-31.
- Gholami A, Malhotra D, Sundar H, Biros G. FFT, FMM, or mul- tigrid? A comparative study of state-of-the-art poisson solvers for uniform and nonuniform grids in the unit cube. SIAM J Sci Comput. 2016;38(3):C280-306.
- Habata S, Umezawa K, Yokokawa M, Kitawaki S. Hard- ware system of the Earth Simulator. Parallel Comput. 2004;30(12):1287-313.
- Habata S, Yokokawa M, Kitawaki S. The earth simulator system. NEC Res Dev. 2003;44:21-6.
- Hadri B, Kortas S, Feki S, Khurram R, Newby G Overview of the KAUST's Cray X40 System-Shaheen II. In: CUG2015 Proceed- ings 2015.
- Harlow FH, Welch JE. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys Flu- ids. 1965;8(12):2182-9.
- Ishihara T, Morishita K, Yokokawa M, Uno A, Kaneda Y. Energy spectrum in high-resolution direct numerical simulations of tur- bulence. Phys Rev Fluids. 2016;1(8):9-299.
- Kale LV, Krishnan S Charm++: a portable concurrent object ori- ented system based on c++. In: OOPSLA. vol 93. Citeseer, 1993; p. 91-108
- Kidder LE, Field SE, Foucart F, Schnetter E, Teukolsky SA, Bohn A, Deppe N, Diener P, Hébert F, Lippuner J, Miller J, Ott CD, Scheel MA, Vincent T. SpECTRE: a task-based discontinu- ous Galerkin code for relativistic astrophysics. J Comput Phys. 2017;335:84-114.
- Kim J, Dally WJ, Scott S, Abts D. Technology-driven, highly- scalable dragonfly topology. In: 2008 international symposium on computer architecture. IEEE 2008, p. 77-88.
- McClanahan C, Czechowski K, Battaglino C, Iyer K, Yeung PK, Vuduc R. Prospects for scalable 3d ffts on heterogeneous exascale systems. In: ACMIEEE conference on supercomputing, SC 2011.
- Mininni PD, Rosenberg DL, Reddy R, Pouquet AG. A hybrid MPI- OpenMP scheme for scalable parallel pseudospectral computa- tions for fluid turbulence. Parallel Comput. 2011;37(6-7):316-26.
- Patankar SV. Numerical heat transfer and fluid flow. London: Tay- lor and Francis; 1980.
- Pekurovsky D. P3DFFT: a framework for parallel computations of fourier transforms in three dimensions. SIAM J Sci Comput. 2012;34(4):C192-209.
- Pippig M, Potts D. Scaling parallel fast Fourier transform on bluegene/p. In: Jülich BlueGeneP Scaling Workshop. Jülich BlueGene/P Scaling Workshop; 2010.
- Ravikumar K, Appelhans D, Yeung PK. GPU acceleration of extreme scale pseudo-spectral simulations of turbulence using asynchronism. In: SC '19. New York: ACM; 2019, p. 1-22.
- Rosenberg DL, Pouquet AG, Marino R, Mininni PD. Evidence for Bolgiano-Obukhov scaling in rotating stratified turbulence using high-resolution direct numerical simulations. Phys Fluids. 2015;27(5):055105.
- Samtaney R, Pullin DI, Kosović B. Direct numerical simulation of decaying compressible turbulence and shocklet statistics. Phys Fluids. 2001;13:1415-30.
- Schranner F, Hu X, Adams N. Long-time evolution of the incom- pressible three-dimensional Taylor-Green vortex at very high Reynolds number. In: Proceedings of the eighth international symposium on turbulence and shear flow phenomena (TSFP-8), Poitiers, France; Aug 2013.
- Stone JM, Norman ML. ZEUS-2D: a radiation magnetohydro- dynamics code for astrophysical flows in two space dimensions.
- The magnetohydrodynamic algorithms and tests. ApJS. 1992;80:791.
- Trottenberg U, Oosterlee CW, Schüller A. Multigrid. San Diego: Academic Press; 2001.
- Veldhuizen TL. Arrays in blitz++. In: Caromel D, Oldehoeft RR, Tholburn M, editors. Computing in object-oriented parallel envi- ronments. Berlin: Springer; 1998. p. 223-30.
- Verma MK. Energy trasnfers in fluid flows: multiscale and spectral perspectives. Cambridge: Cambridge University Press; 2019.
- Verma MK, Chatterjee AG, Yadav RK, Paul S, Chandra M, Samtaney R. Benchmarking and scaling studies of pseudospec- tral code Tarang for turbulence simulations. Pramana J Phys. 2013;81(4):617-29.
- Verma MK, Kumar A, Pandey A. Phenomenology of buoyancy- driven turbulence: recent results. New J Phys. 2017;19:025012.
- Yang C, Xue W, Fu H, You H, Wang X, Ao Y, Liu F, Gan L, Xu P, Wang L, Yang G, Zheng W. 10M-core scalable fully-implicit solver for nonhydrostatic atmospheric dynamics. In: International conference for high performance computing, networking, storage and analysis. IEEE Press, IEEE; Sep 2016.
- Yanofsky NS, Mannucci MA. Quantum computing for computer scientists. Cambridge: Cambridge University Press; 2008.
- Yeung PK, Zhai XM, Sreenivasan KR. Extreme events in compu- tational turbulence. PNAS. 2015;112(41):12633.
- Yokokawa M, Itakura K, Uno A, Ishihara T. 16.4-Tflops direct numerical simulation of turbulence by a fourier spectral method on the earth simulator. In: ACM/IEEE 2002 conference. IEEE; 2002.