Academia.eduAcademia.edu

Outline

On A Discrete Dynamical Model For Local Turbulence

1993

https://doi.org/10.1016/0167-2789(96)00065-6

Abstract

Works towards an explanation of the observed experimental deviation of K41 exponent law are generally based on an energy cascade process. An alternative approach, based on the analysis of turbulent sequences, allows us to construct a sequence model where this deviation has a dynamical origin. We finally show why we were forced to go beyond the markovian model and incorporate into the model the frequent long flights, an intermittent effect also present in the experimental data. Key-Words: Turbulence, Dynamical systems. Number of figures: 4 December 1995 CPT-96/P.3301 anonymous ftp or gopher: cpt.univ-mrs.fr Unit'e Propre de Recherche 7061 1 E-mail: ugalde@cpt.univ-mrs.fr On a discrete dynamical model for local turbulence Edgardo Ugalde and Ricardo Lima Centre de Physique Th'eorique de Marseille, CNRS-Luminy Case 907, 13288 Marseille Cedex 9, France. Abstract Works towards an explanation of the observed experimental deviation of K41 exponent law are generally based on an ene...

References (17)

  1. I] L.S. She and E. Leveque. Universal scaling laws in fully developed turbulence, Phys. Rev. Lett. 72 (3) (1994) 336- 339.
  2. E. A. Novikov, Phys. Rev. E 50 (5) (1994) R3303-R3305.
  3. B. Dubruile and E Graner, Scale invariance and scaling exponents in fully developed turbulence, J. Physique, submitted.
  4. A.N. Kolmogorov, The local structure of turbulence in incompressible viscous fluids for very large Reynolds numbers, reprinted in: Proc. Roy. Soc. London Ser. A 434 (1991) 9-13; first published in: Dokl. Akad. Nauk SSSR 30 ( ! 94 ! ) 30 !-305.
  5. U. Frisch, From global to local scaling in fully developed turbulence, Proc. Roy. Soc. London Ser. A 434 (1991) 98-99.
  6. G.i. Taylor, Proc. Roy. Soc. A 164 (1938) 476.
  7. G. Paladin and A. Vulpiani, Anomalous scaling laws in multifractai objects, Phys. Rep. 156 (4) (1987) 147-225.
  8. B.B. Mandelbrot, J. Fluid Mech. 62 (1974) 331-358. [9l U. Frisch and G. Parisi, Fully developed turbulence and intermittency, in: Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, ed. M. Ghil, 85-86.
  9. IIOl fill 1121 il31 1141 1151 1161 !171 1181 P. Billingsley, Ergodic Theory and Information (Wiley, New York, ! 965).
  10. M. Denker, C. Grillenberger and K. Sigmund, Ergodic Theory on Compact Spaces (Springer, Berlin, 1976).
  11. E Anselmet, Y. Gagne, E.J. Hopfinger and R.A. Antonia, J. Fluid Mech. 140 (1984) 63.
  12. M. Ould-Rouis, E Anselmet, E Le Gal and S. Vaienti, Physica D 85 (1995)405-424.
  13. R. Benzi, S. Ciliberto, R. Tripiccione, C. Baudet, E Massaioli and S. Succi, Extended self-similarity in turbulent flows, Phys. Rev. E 48 (l) (1993) R28-R32.
  14. G. Stolobitzky and R. Sreenivasan, Scaling of structure functions, Phys. Rev. E 48 (l) (1993) R33-R36.
  15. W. Feller, An introduction to Probability Theory, Vol. I (Wiley, New York, 1966).
  16. M.E Shlesinger, G.M. Zaslavsky and J. Klafier, Nature 363 (1993) 31-37.
  17. M. Nelkin, Phys. Rev. E to appear.