Academia.eduAcademia.edu

Outline

Properties of Barium Cerate-Zirconate Thin Films

2021, Crystals

https://doi.org/10.3390/CRYST11081005

Abstract

In this work, we review several experimental results showing the electrical properties of barium cerate-zirconate thin films and discuss them in view of the possible influence of various factors on their properties. Most of the presented Ba(Ce, Zr, Y)O3 thin films were formed by the pulsed laser deposition (PLD) technique, however thin films prepared using other methods, like RF magnetron sputtering, electron-beam deposition, powder aerosol deposition (PAD), atomic layer deposition (ALD) and spray deposition are also reported. The electrical properties of the thin films strongly depend on the film microstructure. The influence of the interface layers, space-charge layers, and strain-modified layers on the total conductivity is also essential but in many cases is weaker.

References (54)

  1. Greene, J.E. Tracing the 5000-year recorded history of inorganic thin films from ~3000 BC to the early 1900s AD. Appl. Phys. Rev. 2014, 1, 41302. [CrossRef]
  2. Grove, W.R. VII. On the electro-chemical polarity of gases. Philos. Trans. R. Soc. Lond. 1852, 142, 87-101. [CrossRef]
  3. Eckertová, L. Introduction. In Physics of Thin Films; Springer: New York, NY, USA, 1977; pp. 9-10.
  4. Hoffman, R.L.; Norris, B.J.; Wager, J.F. ZnO-based transparent thin-film transistors. Appl. Phys. Lett. 2003, 82, 733-735. [CrossRef]
  5. Trolier-Mckinstry, S.; Muralt, P. Thin film piezoelectrics for MEMS. J. Electroceram. 2004, 12, 7-17. [CrossRef]
  6. Venkatasubramanian, R.; Siivola, E.; Colpitts, T.; O'Quinn, B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 2001, 413, 597-602. [CrossRef]
  7. Aberle, A.G. Thin-film solar cells. Thin Solid Film. 2009, 517, 4706-4710. [CrossRef]
  8. Wang, J.; Neaton, J.B.; Zheng, H.; Nagarajan, V.; Ogale, S.B.; Liu, B.; Viehland, D.; Vaithyanathan, V.; Schlom, D.G.; Waghmare, U.V.; et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 2003, 299, 1719-1722. [CrossRef]
  9. Shockley, W.; Bardeen, J. Energy bands and mobilities in monatomic semiconductors. Phys. Rev. 1950, 77, 407-408. [CrossRef]
  10. Smith, C.S. Piezoresistance effect in germanium and silicon. Phys. Rev. 1954, 94, 42-49. [CrossRef]
  11. Welser, J.; Hoyt, J.L.; Takagi, S.; Gibbons, J.F. Strain dependence of the performance enhancement in strained-Si n-MOSFETs. In Technical Digest, Proceedings of the IEEE International Electron Devices Meeting, San Francisco, CA, USA, 11-14 December 1994; IEEE: Piscataway, NJ, USA, 1994; pp. 373-376. [CrossRef]
  12. Bedell, S.W.; Khakifirooz, A.; Sadana, D.K. Strain scaling for CMOS. MRS Bull. 2014, 39, 131-137. [CrossRef]
  13. Sun, Y.; Thompson, S.E.; Nishida, T. Physics of strain effects in semiconductors and metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 2007, 101, 104503. [CrossRef]
  14. Schlom, D.G.; Chen, L.Q.; Fennie, C.J.; Gopalan, V.; Muller, D.A.; Pan, X.; Ramesh, R.; Uecker, R. Elastic strain engineering of ferroic oxides. MRS Bull. 2014, 39, 118-130. [CrossRef]
  15. Li, J.; Shan, Z.; Ma, E. Elastic strain engineering for unprecedented materials properties. MRS Bull. 2014, 39, 108-114. [CrossRef]
  16. Bhatt, M.D.; Lee, J.S. Effect of lattice strain on nanomaterials in energy applications: A perspective on experiment and theory. Int. J. Hydrog. Energy 2017, 42, 16064-16107. [CrossRef]
  17. Tuller, H.L.; Bishop, S.R. Point defects in oxides: Tailoring materials through defect engineering. Annu. Rev. Mater. Res. 2011, 41, 369-398. [CrossRef]
  18. Santiso, J.; Burriel, M. Deposition and characterisation of epitaxial oxide thin films for SOFCs. J. Solid State Electrochem. 2011, 15, 985-1006. [CrossRef]
  19. Shi, Y.; Bork, A.H.; Schweiger, S.; Rupp, J.L.M. The effect of mechanical twisting on oxygen ionic transport in solid-state energy conversion membranes. Nat. Mater. 2015, 14, 721-727. [CrossRef] [PubMed]
  20. Kushima, A.; Yildiz, B. Oxygen ion diffusivity in strained yttria stabilized zirconia: Where is the fastest strain? J. Mater. Chem. 2010, 20, 4809-4819. [CrossRef]
  21. Aguesse, F.; Axelsson, A.K.; Reinhard, P.; Tileli, V.; Rupp, J.L.M.; Alford, N.M.N. High-temperature conductivity evaluation of Nb doped SrTiO 3 thin films: Influence of strain and growth mechanism. Thin Solid Film. 2013, 539, 384-390. [CrossRef]
  22. Kreuer, K.D. Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides. Solid State Ion. 1999, 125, 285-302. [CrossRef]
  23. Kreuer, K.D. On the complexity of proton conduction phenomena. Solid State Ion. 2000, 136-137, 149-160. [CrossRef]
  24. Yang, N.; Cantoni, C.; Foglietti, V.; Tebano, A.; Belianinov, A.; Strelcov, E.; Jesse, S.; Di Castro, D.; Di Bartolomeo, E.; Licoccia, S.; et al. Defective interfaces in yttrium-doped barium zirconate films and consequences on proton conduction. Nano Lett. 2015, 15, 2343-2349. [CrossRef]
  25. Fluri, A.; Marcolongo, A.; Roddatis, V.; Wokaun, A.; Pergolesi, D.; Marzari, N.; Lippert, T. Enhanced proton conductivity in Y-doped BaZrO 3 via strain engineering. Adv. Sci. 2017, 4, 1700467. [CrossRef] [PubMed]
  26. Covarrubias, M.S.C.; Sriubas, M.; Bockute, K.; Winiarz, P.; Miruszewski, T.; Skubida, W.; Jaworski, D.; Bartma ński, M.; Szkodo, M.; Gazda, M.; et al. Properties of barium cerate thin films formed using E-beam deposition. Crystals 2020, 10, 1152. [CrossRef]
  27. Løken, A.; Ricote, S.; Wachowski, S. Thermal and chemical expansion in proton ceramic electrolytes and compatible electrodes. Crystals 2018, 8, 365. [CrossRef]
  28. Pergolesi, D.; Fabbri, E.; D'Epifanio, A.; Di Bartolomeo, E.; Tebano, A.; Sanna, S.; Licoccia, S.; Balestrino, G.; Traversa, E. High proton conduction in grain-boundary-free yttrium-doped barium zirconate films grown by pulsed laser deposition. Nat. Mater. 2010, 9, 846-852. [CrossRef]
  29. Shim, J.H.; Gür, T.M.; Prinz, F.B. Proton conduction in thin film yttrium-doped barium zirconate. Appl. Phys. Lett. 2008, 92, 2-5.
  30. Kim, Y.B.; Gür, T.M.; Jung, H.-J.; Kang, S.; Sinclair, R.; Prinz, F.B. Effect of crystallinity on proton conductivity in yttrium-doped barium zirconate thin films. Solid State Ion. 2011, 198, 39-46. [CrossRef]
  31. Hosono, H.; Higuchi, T.; Hattori, T. Electrical and structural properties of BaCe 0.90 Y 0.10 O 3-δ thin film on MgO (100) substrate. J. Appl. Phys. 2008, 104, 113704. [CrossRef]
  32. Magrasó, A.; Ballesteros, B.; Rodríguez-Lamas, R.; Sunding, M.F.; Santiso, J. Optimisation of growth parameters to obtain epitaxial Y-doped BaZrO3 proton conducting thin films. Solid State Ion. 2018, 314, 9-16. [CrossRef]
  33. Bae, K.; Jang, D.Y.; Choi, H.J.; Kim, D.; Hong, J.; Kim, B.K.; Lee, J.H.; Son, J.W.; Shim, J.H. Demonstrating the potential of yttrium-doped barium zirconate electrolyte for high-performance fuel cells. Nat. Commun. 2017, 8, 1-9. [CrossRef]
  34. Arab Pour Yazdi, M.; Briois, P.; Georges, S.; Costa, R.; Billard, A. Characterization of PCFC-electrolytes deposited by reactive magnetron sputtering; comparison with ceramic bulk samples. Fuel Cells 2013, 13, 549-555. [CrossRef]
  35. Arab Pour Yazdi, M.; Briois, P.; Georges, S.; Shaula, A.L.; Cavaleiro, A.; Billard, A. Comparison of structural and electrical properties of barium zirconate pellets and thin films. J. Electrochem. Soc. 2010, 157, B1582. [CrossRef]
  36. Wu, L.J.; Wu, J.M. Reduced leakage current and conduction mechanisms of sputtered platinum-doped lead barium zirconate thin films. J. Phys. D Appl. Phys. 2007, 40, 4948-4952. [CrossRef]
  37. Park, J.S.; Kim, Y.B.; An, J.; Shim, J.H.; Gür, T.M.; Prinz, F.B. Effect of cation non-stoichiometry and crystallinity on the ionic conductivity of atomic layer deposited Y:BaZrO 3 films. Thin Solid Film. 2013, 539, 166-169. [CrossRef]
  38. An, J.; Beom Kim, Y.; Sun Park, J.; Hyung Shim, J.; Gür, T.M.; Prinz, F.B. Fluorine contamination in yttrium-doped barium zirconate film deposited by atomic layer deposition. J. Vac. Sci. Technol. A Vac. Surf. Film. 2012, 30, 01A161. [CrossRef]
  39. Exner, J.; Nazarenus, T.; Kita, J.; Moos, R. Dense Y-doped ion conducting perovskite films of BaZrO 3 , BaSnO 3 , and BaCeO 3 for SOFC applications produced by powder aerosol deposition at room temperature. Int. J. Hydrogen Energy 2020, 45, 10000-10016.
  40. Exner, J.; Nazarenus, T.; Hanft, D.; Kita, J.; Moos, R. What happens during thermal post-treatment of powder aerosol deposited functional ceramic films? Explanations based on an experiment-enhanced literature survey. Adv. Mater. 2020, 32, 1908104.
  41. Schneller, T.; Griesche, D. Inkjet printed Y-substituted barium zirconate layers as electrolyte membrane for thin film electrochemi- cal devices. Membranes 2019, 9, 131. [CrossRef]
  42. Dubal, S.U.; Jamale, A.P.; Bhosale, C.H.; Jadhav, L.D. Proton conducting BaCe 0.7 Zr 0.1 Y 0.2 O 2.9 thin films by spray deposition for solid oxide fuel cell. Appl. Surf. Sci. 2015, 324, 871-876. [CrossRef]
  43. Yoo, Y.; Lim, N. Performance and stability of proton conducting solid oxide fuel cells based on yttrium-doped barium cerate- zirconate thin-film electrolyte. J. Power Sources 2013, 229, 48-57. [CrossRef]
  44. Chiara, A.; Giannici, F.; Pipitone, C.; Longo, A.; Aliotta, C.; Gambino, M.; Martorana, A. Solid-solid interfaces in protonic ceramic devices: A critical review. ACS Appl. Mater. Interfaces 2020, 12, 55537-55553. [CrossRef]
  45. Polfus, J.M.; Norby, T.; Bredesen, R. Proton segregation and space-charge at the BaZrO 3 (0 0 1)/MgO (0 0 1) heterointerface. Solid State Ion. 2016, 297, 77-81. [CrossRef]
  46. Saeed, S.W.; Norby, T.; Bjørheim, T.S. Charge-carrier enrichment at BaZrO 3 /SrTiO 3 interfaces. J. Phys. Chem. C 2019, 123, 20808-20816. [CrossRef]
  47. Saeed, S.W.; Bjørheim, T.S. The role of space charge at metal/oxide interfaces in proton ceramic electrochemical cells. J. Phys. Chem. C 2020, 124, 20827-20833. [CrossRef]
  48. Jennings, D.; Ricote, S.; Caicedo, J.M.; Santiso, J.; Reimanis, I. The effect of Ni and Fe on the decomposition of yttrium doped barium zirconate thin films. Scr. Mater. 2021, 201, 113948. [CrossRef]
  49. Ottochian, A.; Dezanneau, G.; Gilles, C.; Raiteri, P.; Knight, C.; Gale, J.D. Influence of isotropic and biaxial strain on proton conduction in Y-doped BaZrO3: A reactive molecular dynamics study. J. Mater. Chem. A 2014, 2, 3127. [CrossRef]
  50. Chen, Q.; Braun, A.; Ovalle, A.; Savaniu, C.-D.; Graule, T.; Bagdassarov, N. Hydrostatic pressure decreases the proton mobility in the hydrated BaZr 0.9 Y 0.1 O 3 proton conductor. Appl. Phys. Lett. 2010, 97, 041902. [CrossRef]
  51. Sandiumenge, F. A multiscale perspective on misfit dislocations in oxide films. Front. Mater. 2019, 6, 13. [CrossRef]
  52. Marrocchelli, D.; Sun, L.; Yildiz, B. Dislocations in SrTiO 3 : Easy to reduce but not so fast for oxygen transport. J. Am. Chem. Soc. 2015, 137, 4735-4748. [CrossRef]
  53. Garbrecht, M.; Saha, B.; Schroeder, J.L.; Hultman, L.; Sands, T.D. Dislocation-pipe diffusion in nitride superlattices observed in direct atomic resolution. Sci. Rep. 2017, 7, 46092. [CrossRef] [PubMed]
  54. Gaboriaud, R.J. Dislocation core and pipe diffusion in Y 2 O 3 . J. Phys. D Appl. Phys. 2009, 42, 135410. [CrossRef]