Academia.eduAcademia.edu

Outline

Mechanism of secondary currents in open channel flows

2012, Journal of Geophysical Research

https://doi.org/10.1029/2012JF002510

Abstract

This paper describes the conditions for initiation and maintenance of secondary currents in open channel flows. By analyzing the Reynolds equation in the wall-normal and wall-tangent directions, this study reveals that, like other types of vortices, the secondary currents are originated in the near-boundary region, and the magnitude (or strength) of secondary flow is proportional to the lateral gradient of near-wall velocity. The near-wall secondary flow always moves from the region with lower velocity (or lower boundary shear stress) to the location with higher velocity (or higher boundary shear stress). Subsequently, the near-boundary secondary flow creeps into the main flow and drives circulation within a region enclosed by lines of zero total shear stress, leading to anisotropy of turbulence in the main flow region. This paper also discusses typical secondary currents in open channel flows and presents the relationship between sediment transport and secondary currents. The formation of sand ridges widely observed on the Earth surface is explained in the light of the proposed relationship.

References (61)

  1. Albayrak, I. (2008), An experiment study of coherent structures, secondary currents and surface boils and their interrelation in open-channel flow, PhD thesis, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
  2. Blanckaert, K., and W. H. Graf (2004), Momentum transport in sharp open- channel bends, J. Hydrol. Eng., 130(3), 186-198, doi:10.1061/(ASCE) 0733-9429(2004)130:3(186).
  3. Boussinesq, J. (1877), Essai sur la théorie des eaux courantes, Impimerie Nationale, Paris.
  4. Bradshaw, P. (1987), Turbulent secondary flows, Annu. Rev. Fluid Mech., 19, 53-74, doi:10.1146/annurev.fl.19.010187.000413.
  5. Brundrett, E., and W. D. Baines (1964), The production and diffusion of vorticity in duct flow, J. Fluid Mech., 19, 375-394, doi:10.1017/ S0022112064000799.
  6. Carling, P. A., J. J. Williams, I. W. Croudace, and C. L. Amos (2009), Formation of mud ridge and runnels in the intertidal zone of the Severn Estuary, UK, Cont. Shelf Res., 29, 1913-1926, doi:10.1016/ j.csr.2008.12.009.
  7. Colombini, M. (1993), Turbulence driven secondary flows and the forma- tion of sand ridges, J. Fluid Mech., 254, 701-719, doi:10.1017/ S0022112093002319.
  8. Cooper, J. R., and S. J. Tait (2008), The spatial organization of time- averaged streamwise velocity and its correlation with the surface topog- raphy of water-worked gravel bed, Acta Geophys., 56(3), 614-641, doi:10.2478/s11600-008-0023-0.
  9. Culbertson, L. K. (1967), Evidence of secondary circulation in an alluvial channel, U.S. Geol. Surv. Prof. Pap., 575-D, 214-216.
  10. Einstein, H. A., and H. Li (1956), The viscous sublayer along a smooth boundary, J. Eng. Mech. Div., 82, 1-27.
  11. Flintham, T. P., and P. A. Carling (1988), The prediction of mean bed and wall boundary shear in uniform and compositely rough channels, in River Regime, edited by R. White, pp. 267-287, John Wiley, Chichester, U. K. Flintham, T. P., and P. A. Carling (1989), Manning's-N of composite roughness in channels of simple cross section, in Proceedings of the International Conference for Centennial of Manning's Formula and Kuichling's Rational Formula, edited by B. C. Yen, pp. 518-529, Am. Soc. Civ. Eng., Reston, Va.
  12. Franca, M. J., and U. Lemmin (2006), Cross-section periodicity of turbulent gravel-bed river flows, in River, Coastal and Estuarine Morphodynamics, edited by G. Parker and M. H. Garcıía, pp. 203-210, Taylor and Francis, New York.
  13. Galletti, B., and A. Bottaro (2004), Large-scale secondary structures in duct flow, J. Fluid Mech., 512, 85-94, doi:10.1017/S0022112004009966.
  14. Garnier, R., N. Dodd, A. Falques, and D. Calvete (2010), Mechanisms con- trolling crescentic bar amplitude, J. Geophys. Res., 115, F02007, doi:10.1029/2009JF001407.
  15. Gavrilakis, S. (1992), Numerical simulation of low Reynolds-number turbulent flow through a straight square duct, J. Fluid Mech., 244, 101-129, doi:10.1017/S0022112092002982.
  16. Gerard, R. (1978), Secondary flow in noncircular conduits, J. Hydraul. Div. Am. Soc. Civ. Eng., 104, 755-773.
  17. Gessner, F. B. (1973), The origin of secondary flow in turbulent flow along a corner, J. Fluid Mech., 58, 1-25, doi:10.1017/S0022112073002090.
  18. Hirano, M., and T. Ohmoto (1988), Experimental study on the interaction of between longitudinal vortices and sand ribbons, in Proceedings of the 6th Congress, vol. 2, pp. 59-65, APD-IAHR, Madrid.
  19. Karcz, I. (1981), Reflections on the origin of small scale longitudinal streambed scours, in Fluvial Geomorphology: A Proceedings of the For- uth Annual Geomorphology Symposia Series, edited by M. Morisawa, pp. 149-177, Allen and Unwin, London.
  20. Karl, H. A. (1980), Speculations on processes responsible for mesoscale current lineations on the continental shelf, southern California, Mar. Geol., 34, M9-M18.
  21. Kenyon, N. H. (1970), Sand ribbons of European tidal seas, Mar. Geol., 9, 25-39.
  22. Kinoshita, R. (1967), An analysis of the movement of flood waters by aerial photography, concerning characteristics of turbulence and surface flow, Photogr. Surv., 6, 1-17.
  23. Kironoto, B. A., and W. H. Graf (1995), Turbulence characteristics in rough non-uniform open-channel flow, Proc. ICE Water Mar. Energy, 112, 336-348.
  24. Knight, D. W., and H. S. Patel (1985), Boundary shear in smooth rectan- gular ducts, J. Hydrol. Eng., 111(1), 29-47, doi:10.1061/(ASCE)0733- 9429(1985)111:1(29).
  25. Liao, K., J. Qu, J. Tang, F. Ding, H. Liu, and S. Zhu (2010), Activity of wind-blown sand and the formation of feathered sand Ridges in the Kumtagh Desert, China, Boundary Layer Meteorol., 135, 333-350, doi:10.1007/s10546-010-9469-0.
  26. Lim, S. Y., and S. Q. Yang (2005), Simplified model of tractive-force dis- tribution in closed conduits, J. Hydraul. Eng., 131(4), 322-329, doi:10.1061/(ASCE)0733-9429(2005)131:4(322).
  27. McLean, S. R. (1981), The role of non-uniform roughness of sand ribbons, Mar. Geol., 42, 49-74, doi:10.1016/0025-3227(81)90158-4.
  28. McLelland, S. J., P. J. Ashworth, J. L. Best, J. Roden, and G. J. Klaassen (1999), Flow structure and spatial distribution of suspended sediment around an evolving braid bar, Jamuna River, Bangladesh, in Fluvial Sedimentology VI, Int. Assoc. Sedimentol. Spec. Publ., vol. 28, edited by N. D. Smith and J. Rogers, pp. 43-57, Gent, Belgium.
  29. Nezu, I., and H. Nakagawa (1984), Cellular secondary currents in a straight conduit, J. Hydr. Eng., 110, 173-193.
  30. Nezu, I., and H. Nakagawa (1989), Self-forming mechanism of longitudinal sand ridges and troughs in fluvial open channel flows, in Proceedings of the 23rd Congress, pp. B65-B72, IAHR, Madrid.
  31. Nezu, I., and H. Nakagawa (1993), Turbulence in Open-Channel Flows, A. A. Balkema, Rotterdam, Netherlands.
  32. Nezu, I., and W. Rodi (1985), Experimental study on secondary currents in open channel flows, in Proceedings of the 21st Congress, vol. 2, pp. 115-119, IAHR, Madrid.
  33. Nezu, I., H. Nakagawa, and N. Kawashima (1988), Cellular secondary cur- rents and sand ribbons in fluvial channel flows, in Proceedings of the 6th Congress, vol. 2, pp. 51-58, APD-IAHR, Madrid.
  34. Nikora, V., and A. G. Roy (2010), Secondary flows in rivers: Theoretical framework, recent advances, and current challenges, paper presented at Conference on Gravel-Bed River 7, Int. Assoc. for Hydraul. Res., Tadoussac, Canada.
  35. Perkins, H. J. (1970), The formation of streamwise vorticity in turbulent flow, J. Fluid Mech., 44, 721-740, doi:10.1017/S0022112070002112.
  36. Prandtl, L. (1905), Verhandlungen des dritten internationalen Mathematiker- Kongresses in Heidelberg 1904, edited by A. Krazer, Teubner, p. 484, Leipzig, Germany. [English translation in Early Developments of Modern Aerodynamics, edited by J. A. K. Ackroyd, B. P. Axcell, and A. L. Ruban, Butterworth-Heinemann, Oxford, UK, 2001.]
  37. Prandtl, L. (1952), Uber die ausgebildete Turbulenz, ZAMM, 5, 136-139.
  38. Rhodes, D. G., and D. W. Knight (1994), Distribution of shear force on boundary of smooth rectangular duct, J. Hydrol. Eng., 120(7), 787-807, doi:10.1061/(ASCE)0733-9429(1994)120:7(787).
  39. Rodriguez, J. F., and M. H. Garcia (2008), Laboratory measurements of 3-D flow patterns and turbulence in straight oen channel with rough bed, J. Hydraul. Res., 46, 454-465, doi:10.3826/jhr.2008.2994.
  40. Sambrook Smith, G. H., and R. I. Ferguson (1996), The gravel-sand transi- tion: Flume study of channel response to reduce slope, Geomorphology, 16, 147-159, doi:10.1016/0169-555X(95)00140-Z.
  41. Schlichting, H. (1979), Boundary-Layer Theory, 7th ed., McGraw Hill, New York.
  42. Shiono, K., and D. W. Knight (1991), Turbulent open-channel flows with variable depth across the channel, J. Fluid Mech., 222, 617-646, doi:10.1017/S0022112091001246.
  43. Tamburrino, A., and J. S. Gulliver (1999), Large flow structures in a turbu- lent open channel flow, J. Hydraul. Res., 37(3), 363-380, doi:10.1080/ 00221686.1999.9628253.
  44. Tracy, H. J. (1965), Turbulent flow in a three-dimensional channel, J. Hydr. Eng., 91(6), 9-35.
  45. Trowbridge, J. H. (1995), A mechanism for the formation and maintenance of shore-oblique sand ridges on storm-dominated shelves, J. Geophys. Res., 100(C8), 16,071-16,086, doi:10.1029/95JC01589.
  46. Tsujimoto, T. (1989), Longitudinal strips of alternate sorting due to cellular secondary currents, in Proceedings of the 23rd Congress, B17-B25, IAHR, Madrid.
  47. Vanoni, V. A. (1946), Transportation of suspended sediment by water, Trans. Am. Soc. Civ. Eng., 111, 67-133.
  48. Wang, Z. Q., and N. S. Cheng (2005), Secondary flows over artificial bed strips, Adv. Water Resour., 28(5), 441-450, doi:10.1016/j.advwatres. 2004.12.008.
  49. Webel, G., and Schatzmann, M. (1984), Transverse mixing in open channel flow, J. Hydr. Eng., 110(4), 423-435.
  50. Whitehouse, R. J. S., P. Bassoullet, K. R. Dyer, H. J. Mitchener, and W. Roberts (2000), The influence of bedforms on flow and sediment transport over intertidal mudflats, Cont. Shelf Res., 20, 1099-1124, doi:10.1016/S0278-4343(00)00014-5.
  51. Williams, J. J., P. A. Carling, C. L. Amos, and C. Thompson (2008), Field investigation of ridge-runnel dynamics on an intertidal mudflat, Estuarine Coastal Shelf Sci., 79, 213-229, doi:10.1016/j.ecss.2008. 04.001.
  52. Yang, S. Q. (2007), Turbulent transfer mechanism in sediment-laden flow, J. Geophys. Res., 112, F01005, doi:10.1029/2005JF000452.
  53. Yang, S. Q., and J. W. Lee (2007), Reynolds shear stress distributions in a gradually varied flow, J. Hydraul. Res., 45(4), 462-471, doi:10.1080/ 00221686.2007.9521780.
  54. Yang, S. Q., and S. Y. Lim (1997), Mechanism of energy transportation and turbulent flow in a 3D channel, J. Hydr. Eng., 123(8), 684-692.
  55. Yang, S. Q., and S. Y. Lim (1998), Boundary shear stress distribution in smooth rectangular open channel flows, Proc. Int. Civ. Eng. Water Mar. Energy, 130(9), 163-173.
  56. Yang, S. Q., and S. Y. Lim (2005), Boundary shear stress distribution in trapezoidal channels, J. Hydraul. Res., 43(1), 98-102, doi:10.1080/ 00221680509500114.
  57. Yang, S. Q., and S. Y. Lim (2006), Shear stress in smooth rectangular open- channel flows: Discussion, J. Hydr. Eng., 132(6), 629-631.
  58. Yang, S. Q., and A. J. McCorquadale (2004), Determination of boundary shear stress and Reynolds shear stress in smooth rectangular channel flows, J. Hydraul. Eng., 130(5), 458-462, doi:10.1061/(ASCE)0733- 9429(2004)130:5(458).
  59. Yang, S. Q., S. Y. Lim, and A. J. McCorquadale (2005a), Investigation of near wall velocity in 3-D smooth channel flows, J. Hydrol. Res., 43(2), 149-157, doi:10.1080/00221686.2005.9641231.
  60. Yang, S. Q., S. K. Tan, and S. Y. Lim (2005b), Flow resistance and bed form geometry in a wide alluvial channel, Water Resour. Res., 41, W09419, doi:10.1029/2005WR004211.
  61. Yassin, A. (1953), Mean Roughness Coefficient in Open Channels With Different Roughness of Bed and Sidewalls, Verlag Leemann, Zurich.