Agent-Based Ubiquitous Computing
2010, Atlantis Ambient and Pervasive Intelligence
Abstract
Ubiquitous computing names the third wave in computing, where the personal computing era appears when technology recedes into the background of our lives. The widespread use of new mobile technology implementing wireless communications such as personal digital assistants (PDAs) and smart phones enables a new type of advanced applications. In the past years, the main focus of research in mobile services has aimed at the anytime-anywhere principle (ubiquitous computing). However, there is more to it. The increasing demand for distributed problem solving led to the development of multi-agent systems. The latter are formed from a collection of independent software entities whose collective skills can be applied in complex and real-time domains. The target of such systems is to demonstrate how goal directed, robust and optimal behavior can arise from interactions between individual autonomous intelligent software agents. These software entities exhibit characteristics like autonomy, responsiveness, pro-activeness and social ability. Their functionality and effectiveness has proven to be highly depended on the design and development and the application domain. In fact, in several cases, the design and development of effective services should take into account the characteristics of the context from which a service is requested. Context is the set of suitable environmental states and settings concerning a user, which are relevant for a situation sensitive application in the process of adapting the services and information offered to the user. Agent technology seems to be the right technology to offer the possibility of exploring the dynamic context of the user in order to provide added-value services or to execute more and complex tasks. In this respect, agent-based ubiquitous computing can benefit from marrying the agent-based technology for the extensive usage of distributed functionality, to be deployed for lightweight devices and enable to combine ubiquity and intelligence in different application areas and challenge with questions the research communities in computer science, artificial intelligence and engineering. We noticed during the AAMAS workshop we organized about this issue in 2007 that, although a number of other books on ubiquitous computing have been published in the last years, none of these has focused on the agent-based perspective. So we opened a call for chapters to gather input and feedback concerning the above challenges, through the collection of the high-quality contributions that reflect and advance the state-of-the art in agent-based ubiquitous application systems. It brought together researchers, agent-based vii viii Agent-Based Ubiquitous Computing software developers, users and practitioners involved in the area of agent-based ubiquitous systems, coming from many disciplines, with the target to discuss the different fundamental principles for construction and design of agents for specific applications, how they cooperate and communicate, what tasks can be set and how different properties like coordination and communication have been implemented, and which are the different problems they had to cope with. Existing perspectives of ubiquitous agents within different application domains have been welcome, as well as the different mechanisms for design and cooperation that can be used within different agent building environments. Specifically, the book focused on the different disciplines contributing to the design, cooperation, coordination and implementation problems of ubiquitous computing applications and how these can be solved through the utilization of agents. Thanks are due to all contributors and referees for their kind cooperation and enthusiasm, and to Zeger Karssen (Editorial Atlantis Press) for his kind advice and help to publish this volume.
References (82)
- 3 Global structure of the agent-based generic model . . . . . . . . . . . . . . . . . . 37
- 4 Generic ambient agent and world model . . . . . . . . . . . . . . . . . . . . . . . 40
- 5 Case study 1: An ambient driver support system . . . . . . . . . . . . . . . . . . . 42
- 6 Case study 2: Ambient aggression handling system . . . . . . . . . . . . . . . . . 45
- 7 Case study 3: Ambient system for management of medicine usage . . . . . . . . . 48
- 8 Specification and verification of dynamic properties . . . . . . . . . . . . . . . . . 49
- 9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
- 10 Appendix 1: Driver case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.10.1 Driver assessment agent: Domain-specific temporal rules . . . . . . . . . 54 3.10.2 Cruise control agent: Domain-specific temporal rules . . . . . . . . . . . 54 3.10.3 Steering monitoring agent: Domain-specific temporal rules . . . . . . . . 54 3.10.4 Steering sensoring agent: Domain-specific temporal rules . . . . . . . . . 55 3.10.5 Gaze-focus sensoring agent: Domain-specific temporal rules . . . . . . . 55 3.10.6 Alcohol-level monitoring agent: Domain-specific temporal rules . . . . . 55 3.10.7 Alcohol sensoring agent: Domain-specific temporal rules . . . . . . . . . 56 3.10.8 Driver: Domain-specific temporal rules . . . . . . . . . . . . . . . . . . . 56 3.10.
- 9 Car and environment: Domain-specific temporal rules . . . . . . . . . . . 56
- 11 Appendix 2: Aggression handling case . . . . . . . . . . . . . . . . . . . . . . . . 56 3.11.1 Sound analysis agent: Domain-specific temporal rules . . . . . . . . . . . 56 3.11.2 Microphone agent: Domain-specific temporal rules . . . . . . . . . . . . 57 3.11.3 Persons in crowd: Domain-specific temporal rules . . . . . . . . . . . . . 58 3.11.4 Police officer at station: Domain-specific temporal rules . . . . . . . . . . 58 3.11.5 Police officer at street: Domain-specific temporal rules . . . . . . . . . . 58
- 12 Appendix 3: Medicine usage case . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.12.1 Medicine box agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.12.2 Usage support agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
- e-Assistance Support by Intelligent Agents over MANETs 63
- Eduardo Rodríguez, Juan C. Burguillo and Daniel A. Rodríguez
- 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
- 1.1 Multi agent systems (MAS) . . . . . . . . . . . . . . . . . . . . . . . . . 64
- 1.2 Ubiquitous computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
- 1.3 Case based reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.1.4 Peer-to-peer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
- 1.5 Mobile ad-hoc networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
- 2 System architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
- 2.1 Reasoning process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
- 2.2 Communication process . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
- 3 A case of study: An intelligent gym . . . . . . . . . . . . . . . . . . . . . . . . . 77
- 4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
- The Active Metadata Framework 85
- Christopher McCubbin, R. Scott Cost, John Cole, Nicholas Kratzmeier, Markus Dale, Daniel Bankman 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.1.1 Background: Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5.1.2 Background: The active metadata concept . . . . . . . . . . . . . . . . . 87
- 2 SimAMF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.2.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.2.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.2.4 Simulation visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.2.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.3 SWARM-AMF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.3.2 System design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.3.3 An experiment using some swarming metrics . . . . . . . . . . . . . . . . 97 5.3.4 Experimental design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.4 List of acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
- Coalition of Surveillance Agents. Cooperative Fusion Improvement in Surveillance Systems 103
- Federico Castanedo, Miguel A. Patricio, Jesús García and José M. Molina
- 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
- 2 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
- 3 Cooperative surveillance agents architecture . . . . . . . . . . . . . . . . . . . . . 105
- 3.1 Sensor and coalition layer . . . . . . . . . . . . . . . . . . . . . . . . . . 107
- 3.2 Coalition protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
- 4 Information fusion for tracking during coalition maintenance . . . . . . . . . . . . 109 6.4.1 Time-space alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 6.4.2 Map correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
- 5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
- 6 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
- Designing a Distributed Context-Aware Multi-Agent System 117
- Virginia Fuentes, Nayat Sánchez-Pi, Javier Carbó and José M. Molina
- 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
- 2 Context-aware multi-agent framework for heterogeneous domains . . . . . . . . . 118 7.2.1 Multi-agent architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
- 3 BDI model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
- 3.1 Beliefs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
- 3.2 Desires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
- 3.3 Intentions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
- 4 Gaia methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
- 4.1 Analysis phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
- 5 Analysis and design using Gaia methodology . . . . . . . . . . . . . . . . . . . . 123 7.5.1 The environmental model . . . . . . . . . . . . . . . . . . . . . . . . . . 124 7.5.2 The organization structure . . . . . . . . . . . . . . . . . . . . . . . . . . 124
- 5.3 Role model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 7.5.4 Interaction model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 7.5.5 Organizational rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 7.5.6 Agent model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 7.5.7 Service model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
- 6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
- Agent-Based Context-Aware Service in a Smart Space 131 Wan-rong Jih, Jane Yung-jen Hsu
- 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
- 2 Background technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 8.2.1 Context models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 8.2.2 Context reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
- 3 Smart space infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
- 4 Context-aware service platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
- Context-awarereasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 8.4.2 Service planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 8.4.3 Context knowledge base . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
- 5 Demonstration scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 8.5.1 Context-aware reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . 142 8.5.2 Service planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
- 6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
- 7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
- Prototype for Optimizing Power Plant Operation 147 Christina Athanasopoulou and Vasilis Chatziathanasiou
- 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
- 9.2 Problem domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
- 9.2.1 Electricity generation units . . . . . . . . . . . . . . . . . . . . . . . . . 148
- 9.2.2 Knowledge engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
- 9.3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
- 9.3.1 Agent programming paradigm . . . . . . . . . . . . . . . . . . . . . . . 150
- 9.3.2 Intelligent Power Plant engineer Assistant MAS (IPPAMAS) . . . . . . . 151
- 9.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
- 9.4.1 Data mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
- 9.4.2 Multi-agent system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
- 9.4.3 Wireless transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
- 9.4.4 Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
- 9.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
- 9.5.1 MAS performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
- 9.5.2 User evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
- 9.6 Concluding remarks and future enhancements . . . . . . . . . . . . . . . . . . . . 161
- IUMELA: Intelligent Ubiquitous Modular Education Learning Assistant in Third Level Education 163
- Elaine McGovern, Bernard Roche, Rem Collier, Eleni Mangina 10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
- 2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 10.2.1 Multi-agent systems based learning technologies . . . . . . . . . . . . . . 164 10.2.2 The mobile device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 10.2.3 Modular education at UCD . . . . . . . . . . . . . . . . . . . . . . . . . 169 10.2.4 Learning styles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 10.2.5 Teaching strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 10.2.6 Evaluation techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 10.2.7 Presenting modules for selection . . . . . . . . . . . . . . . . . . . . . . 171
- 3 IUMELA: the agent architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 10.3.1 The assistant agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 10.3.2 The moderator agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 10.3.3 Expert agent technologies . . . . . . . . . . . . . . . . . . . . . . . . . . 174
- 4 IUMELA student user interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 10.4.1 Initial registration and login . . . . . . . . . . . . . . . . . . . . . . . . . 174 10.4.2 Personalised welcome screen . . . . . . . . . . . . . . . . . . . . . . . . 175 10.4.3 Learning journal facility . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 10.4.4 Student messaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 10.4.5 The module and assistant facilities . . . . . . . . . . . . . . . . . . . . . 178
- 5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 10.5.1 ABITS FIPA messenger in IUMELA . . . . . . . . . . . . . . . . . . . . 180
- 6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181