Academia.eduAcademia.edu

Outline

R2D2: A Dbpedia Chatbot Using Triple-Pattern Like Queries

Algorithms

https://doi.org/10.3390/A13090217

Abstract

Chatbots, also known as conversation agents, are programs that are able to simulate and reproduce an intelligent conversation with humans. Although this type of program is not new, the explosion of the available information and the rapid increase of the users seeking this information have renewed the interest in their development. In this paper, we present R2D2, an intelligent chatbot relying on semantic web technologies and offering an intelligent controlled natural language interface for accessing the information available in DBpedia. The chatbot accepts structured input, allowing users to enter triple-pattern like queries, which are answered by the underlying engine. While typing, an auto-complete service guides users on creating the triple patterns, suggesting resources available in the DBpedia. Based on user input (in the form of triple-pattern like queries), the corresponding SPARQL queries are automatically formulated. The queries are submitted to the corresponding DBpedia SP...

References (29)

  1. Valtolina, S.; Barricelli, B.R.; Gaetano, S.D.; Diliberto, P. Chatbots and Conversational Interfaces: Three Domains of Use. In Proceedings of the Fifth International Workshop on Cultures of Participation in the Digital Age-CoPDA, Castiglione della Pescaia, Italy, 29 May 2018; pp. 62-70.
  2. Weizenbaum, J. ELIZA-A computer program for the study of natural language communication between man and machine. Commun. ACM 1996, 9, 36-45. [CrossRef]
  3. Reis, A.; Paulino, D.; Paredes, H.; Barroso, J. Using Intelligent Personal Assistants to Strengthen the Elderlies' Social Bonds-A Preliminary Evaluation of Amazon Alexa, Google Assistant, Microsoft Cortana, and Apple Siri. In Proceedings of the 2018 2nd International Conference on Technology and Innovation in Sports, Health and Wellbeing (TISHW), Thessaloniki, Greece, 20-22 June 2018; pp. 1-5.
  4. Troullinou, G.; Kondylakis, H.; Stefanidis, K.; Plexousakis, D. Exploring RDFS kbs using summaries. In Proceedings of the International Semantic Web Conference, Monterey, CA, USA, 8-12 October 2018.
  5. Cebiric, S.; Goasdoué, F.; Kondylakis, H.; Kotzinos, D.; Manolescu, I.; Troullinou, G.; Zneika, M. Summarizing Semantic Graphs: A Survey. VLDB J. 2019, 28, 295-327. [CrossRef]
  6. Lehmann, J.; Isele, R.; Jakob, M.; Jentzsch, A.; Kontokostas, D.; Mendes, P.N.; Hellmann, S.; Morsey, M.; van Kleef, P.; Auer, S.; et al. DBpedia-A Large-scale, Multilingual Knowledge Base Extracted from Wikipedia. Soc. Work 2015, 6, 167-195. [CrossRef]
  7. Stratigi, M.; Kondylakis, H.; Stefanidis, K. Fairness in Group Recommendations in the Health Domain. In Proceedings of the International Conference on Data Engineering, San Diego, CA, USA, 19-22 April 2017; pp. 1481-1488.
  8. Stratigi, M.; Kondylakis, H.; Stefanidis, K. Multidimensional Group Recommendations in the Health Domain. Algorithms 2020, 13, 54. [CrossRef]
  9. Marakakis, E.; Kondylakis, H.; Papakonstantinou, A. APANTISIS: A Greek Question-Answering System for Knowledge-Base Exploration. In Strategic Innovative Marketing; Springer: Cham, Switzerland, 2017; pp. 501-510.
  10. Diefenbach, D.; Lopez, V.; Singh, K.; Maret, P. Core techniques of question answering systems over knowledge bases: A survey. Knowl. Inf. Syst. 2018, 55, 529-569. [CrossRef]
  11. Mutiwokuziva, M.T.; Chanda, M.W.; Kadebu, P.; Mukwazvure, A.; Gotora, T.T. A Neural-network based Chat Bot. In Proceedings of the International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 19-20 October 2017.
  12. Unger, C.; Bühmann, L.; Lehmann, J.; Ngonga Ngomo, A.C.; Gerber, D.; Cimiano, P. Template-based question answering over RDF data. In Proceedings of the 21st International Conference on World Wide Web, Lyon, France, 16-20 April 2012; pp. 639-648.
  13. Soru, T.; Marx, E.; Valdestilhas, A.; Esteves, D.; Moussallem, D.; Publio, G. Neural Machine Translation for Query Construction and Composition. arXiv 2018, arXiv:1806.10478.
  14. Marx, E.; Höffner, K.; Shekarpour, S.; Ngomo, A.C.N.; Lehmann, J.; Auer, S. Exploring Term Networks for Semantic Search over RDF Knowledge Graphs. In Proceedings of the Metadata and Semantics Research, MTSR 2016, Communications in Computer and Information Science, Göttingen, Germany, 22-25 November 2016; Volume 672.
  15. Dubey, M.; Banerjee, D.; Chaudhuri, D.; Lehmann, J. EARL: Joint Entity and Relation Linking for Question Answering over Knowledge Graphs. In Proceedings of the International Semantic Web Conference, Monterey, CA, USA, 8-12 October 2018.
  16. Vegesna, A.; Jain, P.; Porwal, D. Ontology based Chatbot (For E-commerce Website). Int. J. Comput. Appl. 2018, 179, 51-55. [CrossRef]
  17. Augello, A.; Pilato, G.; Machi, A.; Gaglio, S. An Approach to Enhance Chatbot Semantic Power and Maintainability: Experiences within the FRASI Project. In Proceedings of the IEEE Sixth International Conference on Semantic Computing, Palermo, Italy, 19-21 September 2012; pp. 186-193.
  18. Zhu, Y.; Wan, J.; Zhou, Z.; Chen, L.; Qiu, L.; Zhang, W.; Jiang, X.; Yu, Y. Triple-to-Text: Converting RDF Triples into High-Quality Natural Languages via Optimizing an Inverse KL Divergence. In Proceedings of the International ACM SIGIR Conference on Research and Development in Information Retrieval, Paris, France, 21-25 July 2019; pp. 455-464.
  19. Li, Z.; Lin, Z.; Ding, N.; Zheng, H.T.; Shen, Y. Triple-to-Text Generation with an Anchor-to-Prototype Framework. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, Yokohama, Japan, 11-17 July 2020; pp. 3780-3786.
  20. Vougiouklis, P.; Elsahar, H.; Kaffee, L.; Gravier, C.; Laforest, F.; Hare, J.S.; Simperl, E. Neural Wikipedian: Generating Textual Summaries from Knowledge Base Triples. J. Web Semant. 2018, 52, 1-15. [CrossRef]
  21. Moussallem, D.; Speck, R.; Ngonga Ngomo, A.C. Generating Explanations in Natural Language from Knowledge Graphs. In Knowledge Graphs for eXplainable Artificial Intelligence; IOS Press: Amsterdam, NH, USA, 2020; pp. 213-241.
  22. Hartmann, A.K.; Tommaso, M.E.; Moussallem, D.; Publio, G.; Valdestilhas, A.; Esteves, D.; Neto, C.B. Generating a large dataset for neural question answering over the dbpedia knowledge base. In Proceedings of the Workshop on Linked Data Management, WEBBR, Vienna, Austria, 17-18 April 2018.
  23. Athreya, R.G.; Ngomo, A.C.N.; Usbeck, R. Enhancing Community Interactions with Data-Driven Chatbots-The DBpedia Chatbot. In Proceedings of the WWW' 18: The Web Conference 2018, Lyon, France, 23-27 April 2018; pp. 143-146.
  24. ISO/IEC DIS 25023. Systems and Software Engineering-Systems and Software Quality Requirements and Evaluation (SQuaRE)-Measurement of System and Software Product Quality; ISO: Geneva, Switzerland, 2016.
  25. Brooke, J. SUS-A quick and dirty usability scale. In Usability Evaluation in Industry; CRC Press: Boca Raton, FL, USA, 1996; Volume 189, pp. 4-7.
  26. Sauro, J.; Lewis, J.R. Correlations among prototypical usability metrics: Evidence for the construct of usability. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Boston, MA, USA, 4-9 April 2009; pp. 1609-1618.
  27. Pappas, A.; Troullinou, G.; Roussakis, G.; Kondylakis, H.; Plexousakis, D. Exploring Importance Measures for Summarizing RDF/S KBs. In Proceedings of the European Semantic Web Conference, Portorož, Slovenia, 28 May-1 June 2017; pp. 387-403.
  28. Kondylakis, H.; Plexousakis, D. Ontology evolution: Assisting query migration. In Proceedings of the International Conference on Conceptual Modeling, Florence, Italy, 15-18 October 2012; pp. 331-344.
  29. Kondylakis, H.; Plexousakis, D. Ontology evolution in data integration: Query rewriting to the rescue. In Proceedings of the International Conference on Conceptual Modeling, Brussels, Belgium, 31 October-3 November 2011; pp. 393-401.