Analytical model for flux saturation in sediment transport
2014, Physical Review E
https://doi.org/10.1103/PHYSREVE.89.052213Abstract
The transport of sediment by a fluid along the surface is responsible for dune formation, dust entrainment and for a rich diversity of patterns on the bottom of oceans, rivers, and planetary surfaces. Most previous models of sediment transport have focused on the equilibrium (or saturated) particle flux. However, the morphodynamics of sediment landscapes emerging due to surface transport of sediment is controlled by situations out-of-equilibrium. In particular, it is controlled by the saturation length characterizing the distance it takes for the particle flux to reach a new equilibrium after a change in flow conditions. The saturation of mass density of particles entrained into transport and the relaxation of particle and fluid velocities constitute the main relevant relaxation mechanisms leading to saturation of the sediment flux. Here we present a theoretical model for sediment transport which, for the first time, accounts for both these relaxation mechanisms and for the different types of sediment entrainment prevailing under different environmental conditions. Our analytical treatment allows us to derive a closed expression for the saturation length of sediment flux, which is general and can thus be applied under different physical conditions.
References (69)
- R. A. Bagnold, The physics of blown sand and desert dunes (Methuen, New York, 1941).
- L. C. V. Rijn, Principles of sediment transport in rivers, estuaries and coastal seas (Aqua Publications, Amster- dam, 1993).
- R. Greeley and J. D. Iversen, Wind as a geological process on Earth, Mars, Venus, and Titan (Cambridge Univer- sity Press, 1985).
- Y. Shao, Physics and modelling of wind erosion (Kluwer Academy, Dordrecht, Amsterdam, 2008).
- K. Kroy, G. Sauermann, and H. J. Herrmann, Physical Review E 66, 031302 (2002).
- J. F. Kok, E. J. R. Parteli, T. I. Michaels, and D. B. Karam, Reports on Progress in Physics 75, 106901 (2012).
- M. C. Bourke, N. Lancaster, L. K. Fenton, E. J. R. Parteli, J. R. Zimbelman, and J. Radebaugh, Geomor- phology 121, 1 (2010).
- J. E. Ungar and P. K. Haff, Sedimentology 34, 289 (1987).
- M. P. Almeida, J. S. Andrade, and H. J. Herrmann, The European Physical Journal E 22, 195 (2007).
- M. P. Almeida, E. J. R. Parteli, J. S. Andrade, and H. J. Herrmann, Proceedings of the National Academy of Science 105, 6222 (2008).
- T. Pähtz, J. F. Kok, and H. J. Herrmann, New Journal of Physics 14, 043035 (2012).
- E. Meyer-Peter and R. Müller, in Proceedings of the 2nd Meeting of the International Association for Hydraulic Structures Research (IAHR, Stockholm, 1948).
- H. A. Einstein, The bed-load function for sediment trans- portation in open channel flows (United States Depart- ment of Agriculture, Washington, 1950).
- R. A. Bagnold, in US Geological Survey Professional Pa- per 422-I (1966).
- M. Sørensen, Acta Mechanica Supplement 1, 67 (1991).
- A. D. Abrahams and P. Gao, Earth Surface Processes and Landforms 31, 910 (2006).
- M. Lämmel, D. Rings, and K. Kroy, New Journal of Physics 14, 093037 (2012).
- G. Sauermann, K. Kroy, and H. J. Herrmann, Physical Review E 64, 31305 (2001).
- P. Claudin and B. Andreotti, Earth and Planetary Sci- ence Letters 252, 30 (2006).
- B. Andreotti, P. Claudin, and O. Pouliquen, Geomor- phology 123, 343 (2010).
- A. Fourrière, P. Claudin, and B. Andreotti, Journal of Fluid Mechanics 649, 287 (2010).
- P. Hersen, S. Douady, and B. Andreotti, Physical Review Letters 89, 264301 (2002).
- E. M. Franklin and F. Charru, Journal of Fluid Mechan- ics 675, 199 (2011).
- F. Charru, Physics of Fluids 18, 121508 (2006).
- G. S. Ma and X. J. Zheng, The European Physical Jour- nal E 34, 1 (2011).
- T. Pähtz, J. F. Kok, E. J. R. Parteli, and H. J. Her- rmann, Physical Review Letters 111, 218002 (2013).
- F. J. Moraga, F. J. Bonetto, and R. T. Lahey, Interna- tional Journal of Multiphase Flow 25, 1321 (1999).
- Y. Nino and M. Garcia, Hydrological Processes 12, 1197 (1998).
- P. Gao, Journal of Hydraulic Engineering 134, 340 (2008).
- O. Durán, B. Andreotti, and P. Claudin, Physics of Flu- ids 24, 103306 (2012).
- M. Babic, International Journal of Engineering Science 35, 523 (1997).
- R. A. Bagnold, Philosophical Transactions of the Royal Society London A 249, 235 (1956).
- R. A. Bagnold, Proceedings of the Royal Society London Series A 332, 473 (1973).
- K. Ashida and M. Michiue, in Transcripts of the Japan Society for Civil Engineers, Vol. 206 (1972) pp. 59-69.
- Y. Zhang and C. S. Campbell, Journal of Fluid Mechanics 237, 541 (1992).
- W. Du, X. Bao, J. Xu, and W. Wei, Chemical Engineer- ing Science 61, 1401 (2006).
- P. Y. Julien, Erosion and Sedimentation (Press Syndicate of the University of Cambridge, 1995).
- W. K. George, Lectures in turbulence for the 21st Century (Chalmers University Gothenborg, 2009).
- Y. Nino and M. Garcia, Water Resources Research 30, 1915 (1994).
- G. Seminara, L. Solari, and G. Parker, Water Resources Research 38, 1249 (2002).
- E. Lajeunesse, L. Malverti, and F. Charru, Journal of Geophysical Research 115, F04001 (2010).
- J. R. D. Francis, Philosophical Transactions of the Royal Society London A 332, 443 (1973).
- J. E. Abbott and J. R. D. Francis, Philosophical Trans- actions of the Royal Society London A 284, 225 (1977).
- Y. Nino, M. Garcia, and L. Ayala, Water Resources Research 30, 1907 (1994).
- M. Creyssels, P. Dupont, A. O. el Moctar, A. Valance, I. Cantat, J. T. Jenkins, J. M. Pasini, and K. R. Ras- mussen, Journal of Fluid Mechanics 625, 47 (2009).
- R. Greeley, D. G. Blumberg, and S. H. Williams, Sedi- mentology 43, 41 (1996).
- K. R. Rasmussen and M. Sørensen, Journal of Geophys- ical Research 113, F02S12 (2008).
- J. F. Kok and N. O. Renno, Journal of Geophysical Re- search 114, D17204 (2009).
- M. V. Carneiro, T. Pähtz, and H. J. Herrmann, Physical Review Letters 107, 098001 (2011).
- M. V. Carneiro, N. A. M. Araújo, T. Pähtz, and H. J. Herrmann, Physical Review Letters 111, 058001 (2013).
- B. Andreotti, Journal of Fluid Mechanics 510, 47 (2004).
- D. Beladjine, M. Ammi, L. Oger, and A. Valance, Phys- ical Review E 75, 061305 (2007).
- L. Oger, M. Ammi, A. Valance, and D. Beladjine, Computers and Mathematics with Applications 55, 132 (2008).
- N. S. Cheng and Y. M. Chiew, Journal of Hydraulic En- gineering 124, 1235 (1998).
- J. F. Kok, Physical Review Letters 104, 074502 (2010).
- R. F. Luque and R. van Beek, Journal of Hydraulic Re- search 14, 127 (1976).
- L. C. V. Rijn, Journal of Hydraulic Engineering 110, 1431 (1984).
- C. Hu and Y. Hui, Journal of Hydraulic Engineering 122, 245 (1996).
- D. Paphitis, Coastal Engineering 43, 227 (2001).
- E. J. R. Parteli, O. Durán, and H. J. Herrmann, Physical Review E 75, 011301 (2007).
- E. J. R. Parteli and H. J. Herrmann, Physical Review Letters 98, 198001 (2007).
- O. Durán, P. Claudin, and B. Andreotti, Aeolian Re- search 3, 243 (2011).
- P. S. Jackson and J. C. R. Hunt, Quarterly Journal of the Royal Meteorological Society 101, 929 (1975).
- J. C. R. Hunt, S. Leibovich, and K. J. Richards, Quar- terly Journal of the Royal Meteorological Society 114, 1435 (1988).
- Z. He, W. Wu, and S. Wang, Journal of Hydraulic En- gineering 135, 1028 (2009).
- W. Wu, R. Marsooli, and Z. He, Journal of Hydraulic Engineering 138, 503 (2012).
- B. M. Duc and W. Rodi, Journal of Hydraulic Engineer- ing 134, 367 (2008).
- Z. Cao, P. Hu, and G. Pender, Journal of Hydraulic Engineering 137, 267 (2011).
- Z. Cao, Z. Li, G. Pender, and P. Hu, Proceedings of the ICE -Water Management 165, 193 (2012).