Academia.eduAcademia.edu

Outline

Assessing coupling dynamics from an ensemble of time series

2010, Arxiv preprint arXiv: …

Abstract

Finding interdependency relations between (possibly multivariate) time series provides valuable knowledge about the processes that generate the signals. Information theory sets a natural framework for non-parametric measures of several classes of statistical dependencies. However, a reliable estimation from information-theoretic functionals is hampered when the dependency to be assessed is brief or evolves in time. Here, we show that these limitations can be overcome when we have access to an ensemble of independent repetitions of the time series. In particular, we gear a dataefficient estimator of probability densities to make use of the full structure of trial-based measures. By doing so, we can obtain time-resolved estimates for a family of entropy combinations (including mutual information, transfer entropy, and their conditional counterparts) which are more accurate than the simple average of individual estimates over trials. We show with simulated and real data that the proposed approach allows to recover the time-resolved dynamics of the coupling between different subsystems.

References (20)

  1. C. Gray, P. Konig, A. Engel, and W. Singer, Nature 338, 334 (1989).
  2. O. Bjornstad and B. Grenfell, Science 293, 638 (2001).
  3. C. Granger and M. Hatanaka, Spectral analysis of eco- nomic time series (Princeton University Press, 1964).
  4. C. Granger, Econometrica 37, 424 (1969).
  5. R. Quian Quiroga, A. Kraskov, T. Kreuz, and P. Grass- berger, Phys. Rev. E 65, 041903 (2002).
  6. T. Cover and J. Thomas, Elements of information theory (Wiley, 2006).
  7. N. Wiener, Modern mathematics for engineers (McGraw- Hill, New York, 1956), chap. The theory of prediction.
  8. T. Schreiber, Phys. Rev. Lett. 85, 461 (2000).
  9. H. Kantz and T. Schreiber, Nonlinear time series analy- sis (Cambridge university press, 2004), 2nd ed.
  10. S. Frenzel and B. Pompe, Phys. Rev. Lett. 99, 204101 (2007).
  11. P. F. Verdes, Phys. Rev. E 72, 026222 (2005).
  12. G. Gómez-Herrero, Ph.D. thesis, Tampere University of Technology, Department of Signal Processing (2010).
  13. M. Ragwitz and H. Kantz, Physical Review E 65, 056201 (2002).
  14. J. D. Victor, Phys. Rev. E 66, 051903 (2002).
  15. L. Kozachenko and N. Leonenko, Problemy Peredachi Informatsii 23, 9 (1987).
  16. A. Kraskov, H. Stögbauer, and P. Grassberger, Phys. Rev. E 69, 066138 (2004).
  17. S. Frenzel and B. Pompe, Phys. Rev. Lett. 99, 204101 (2007).
  18. M. A. Kramer, E. Edwards, M. Soltani, M. S. Berger, R. T. Knight, and A. J. Szeri, Phys. Rev. E. 70, 011914 (2004).
  19. F. Pesarin, Multivariate permutation tests (John Wiley and Sons, 2001).
  20. K. Rutanen, TIM C++ library, Available online: http://www.tut.fi/tim.