Academia.eduAcademia.edu

Outline

Scale, scaling and multifractals in geophysics: twenty years on

2007

https://doi.org/10.1007/978-0-387-34918-3_18

Abstract

We consider three developments in high number of degrees of freedom approaches to nonlinear geophysics: a) the transition from fractal geometry to multifractal processes, b) the Twenty Years on 18

References (62)

  1. Bak, P., et al. (1987), Self-Organized Criticality: An explanation of 1/f noise, Physical Review Letter, 59, 381-384.
  2. Dewan, E. (1997), Saturated-cascade similtude theory of gravity wave sepctra, J. Geophys. Res., 102, 29799-29817.
  3. Feigenbaum, M. J. (1978), Quantitative universality for a class of nonlinear transformations, J. Stat. Phys., 19, 25.
  4. Frisch, U., et al. (1978), A simple dynamical model of intermittency in fully develop turbulence, Journal of Fluid Mechanics, 87, 719-724.
  5. Gage, K. S. (1979). "Evidence for k-5/3 law inertial range in meso-scale two dimensional turbulence." Journal of Atmospheric Sciences, 36
  6. Gagnon, J., S., et al. (2006), Multifractal earth topography, Nonlin. Proc. Geophys., 13, 541-570.
  7. Gardner, C. (1994), Diffusive filtering theory of gravity wave spectra in the atmosphere, J. Geophys. Res., 99, 20601.
  8. Klinkenberg, B., and M. F. Goodchild (1992), The fractal properties of topography: A com- parison of methods, Earth surface Proc. and Landforms, 17, 217-234.
  9. Kolesnikova, V. N., and A. S. Monin (1965), Spectra of meteorological field fluctuations, Izvestiya, Atmospheric and Oceanic Physics, 1, 653-669.
  10. Kolmogorov, A. N. (1962), A refinement of previous hypotheses concerning the local structure of turbulence in viscous incompressible fluid at high Raynolds number, Journal of Fluid Mechanics, 83, 349.
  11. Lavallée, D., et al. (1993), Nonlinear variability and landscape topography: analysis and simulation, in Fractals in geography, edited by L. De Cola and N. Lam, pp. 171-205, Prentice-Hall, Englewood, N.J.
  12. Lilly, D., and E. L., Paterson (1983). "Aircraft measurements of atmospheric kinetic energy spectra." Tellus, 35A, 379-382.
  13. Lilley, M., et al. (2004), 23/9 dimensional anisotropic scaling of passive admixtures using lidar aerosol data, Phys. Rev. E, 70, 036307-036301-036307.
  14. Lindborg, E., and J. Cho (2001), Horizontal velocity structure functions in the upper troposphere and lower stratosphere i-ii. Observations, theoretical considerations, J. Geophys. Res., 106, 10223.
  15. Lorenz, E. N. (1963), Deterministic Nonperiodic flow, J. Atmos. Sci., 20, 130-141.
  16. Lovejoy, S., and D. Schertzer (1986), Scale invariance in climatological temperatures and the spectral plateau, Annales Geophysicae, 4B, 401-410.
  17. Lovejoy, S., and D. Schertzer (1990), Our multifractal atmosphere: A unique laboratory for non-linear dynamics, Physics in Canada, 46, 62.
  18. Lovejoy, S., and D. Schertzer (1995), How bright is the coast of Brittany? in Fractals in Geoscience and Remote Sensing, edited by G. Wilkinson, pp. 102-151, Office for Official Publications of the European Communities, Luxembourg.
  19. Lovejoy, S., and D. Schertzer (1998a), Stochastic chaos and multifractal geophysics, in Chaos, Fractals and models 96, edited by F. M. Guindani and G. Salvadori, Italian University Press.
  20. Lovejoy, S., and D. Schertzer (1998b), Stochastic chaos, scale invariance, multifractals and our turbulent atmosphere, in ECO-TEC: Architecture of the In-between, edited by e. b. A. Marras, p. in press, Storefront Book series, copublished with Princeton Architectural Press.
  21. Chigirinskaya, Y., Schertzer, D., Lovejoy, S., Lazarev A., and A. Ordanovich (1994). "Unified multifractal atmospheric dynamics tested in the tropics, part I: horizontal scaling and self organized criticality." Nonlinear Processes in Geophysics 1(2/3): 105-114. , 1979. Lovejoy and Schertzer
  22. Lovejoy, S., and D. Schertzer (2006), Multifractals, cloud radiances and rain, J. Hydrol., 322, 59-88.
  23. Lovejoy, S., et al. (1987), Functional Box-Counting and Multiple Dimensions in rain, Science, 235, 1036-1038.
  24. Lovejoy, S., et al. (2004), Fractal aircraft trajectories and nonclassical turbulent exponents, Physical Review E, 70, 036306-036301-036305.
  25. Lovejoy, S., et al. (2007), Is Kolmogorov turbulence relevant in the atmosphere? Geophys. Resear. Lett. (in press).
  26. Mandelbrot, B. B. (1967), How long is the coastline of Britain? Statistical self-similarity and fractional dimension, Science, 155, 636-638.
  27. Mandelbrot, B. B. (1974), Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier, Journal of Fluid Mechanics, 62, 331-350.
  28. Mandelbrot, B. B. (1977), Fractals, form, chance and dimension, Freeman, San Francisco.
  29. Marsan, D., Schertzer, D., S. Lovejoy, 1996: Causal Space-Time Multifractal modelling of rain. J. Geophy. Res. 31D, 26, 333-26, 346.
  30. Matheron, G. (1970), Random functions and their applications in geology, in Geostatistics, edited by D. F. Merriam, pp. 79-87, Plenum Press, New York.
  31. Meneveau, C., and K. R. Sreenivasan (1987), Simple multifractal cascade model for fully develop turbulence, Physical Review Letter, 59, 1424-1427.
  32. Monin, A. S. (1972). Weather forecasting as a problem in physics. Boston Ma, MIT press.
  33. Nastrom, G. D., and K. S. Gage (1983), A first look at wave number spectra from GASP data, Tellus, 35, 383.
  34. Novikov, E. A., and R. Stewart (1964), Intermittency of turbulence and spectrum of fluctuations in energy-disspation, Izv. Akad. Nauk. SSSR. Ser. Geofiz., 3, 408-412.
  35. Orlanski, I. A rational subdivision of scales for atmospheric processes, Bull. Amer. Met. Soc., 56, 527-530.
  36. Parisi, G., and U. Frisch (1985), A multifractal model of intermittency, in Turbulence and predictability in geophysical fluid dynamics and climate dynamics, edited by M. Ghil, Perrin, J. (1913), Les Atomes, NRF-Gallimard, Paris.
  37. Richardson, L. F. (1961), The problem of contiguity: an appendix of statistics of deadly quarrels, General Systems Yearbook, 6, 139-187.
  38. Rodriguez-Iturbe, I., and A. Rinaldo (1997), Fractal River Basins, 547 pp., Cambridge University Press, Cambridge.
  39. Ruelle, D. and F. Takens (1971). "On the nature of turbulence." Communications on Mathematical Physics 20 & 23: 167-192 & 343-344.
  40. Sachs, D., et al. (2002), The multifractal scaling of cloud radiances from 1m to 1km, Fractals, 10, 253-265.
  41. Schertzer, D., and S. Lovejoy (1985a), The dimension and intermittency of atmospheric dynamics, in Turbulent Shear Flow 4, edited by B. Launder, pp. 7-33, Springer-Verlag.
  42. Schertzer, D., and S. Lovejoy (1985b), Generalised scale invariance in turbulent phenomena, Physico-Chemical Hydrodynamics Journal, 6, 623-635.
  43. Schertzer, D. and S. Lovejoy (1986). Generalised scale invariance and anisotropic inhomo- geneous fractals in turbulence. Fractals in Physics. L. Pietronero and E. Tosatti. Amsterdam, North-Holland: 457-460.
  44. Schertzer, D., and S. Lovejoy (1987), Physical modeling and Analysis of Rain and Clouds by Anisotropic Scaling of Multiplicative Processes, Journal of Geophysical Research, 92, 9693-9714.
  45. Schertzer, D. and S. Lovejoy (1992). "Hard and Soft Multifractal processes." Physica A 185 187-194. et al., pp. 84-88, North Holland, Amsterdam.
  46. Schertzer, D., and S. Lovejoy (1994), Multifractal Generation of Self-Organized Criticality, in Fractals In the natural and applied sciences, edited by M. M. Novak, pp. 325-339, Elsevier, North-Holland.
  47. Schertzer, D., and S. Lovejoy (1997), Universal Multifractals do Exist! J. Appl. Meteor., 36, 1296-1303.
  48. Schertzer, D., S. Lovejoy, 2004: Uncertainty and Predictability in Geophysics: Chaos and Multifractal Insights, In: State of the Planet, Frontiers and Challenges in Geophysics, edited by R. S. J. Sparks, and C. J. Hawkesworth, pp. 317-334, AGU, Washington.
  49. Schertzer, D. and S. Lovejoy (2006). Multifractals en Turbulence et Géophysique. Irruption des Géométries Fractales dans la Sciences. G. Belaubre and F. Begon. Paris, Académie Européeene Interdisciplinaire des Sciences: 189-209.
  50. Schertzer, D., et al. (1993), Generic Multifractal phase transitions and self-organized criticality, in Cellular Automata: prospects in astronomy and astrophysics, edited by J. M. Perdang and A. Lejeune, pp. 216-227, World Scientific.
  51. Schertzer, D., S. Lovejoy, F. Schmitt, I. Tchiguirinskaia and D. Marsan (1997). "Multifractal cascade dynamics and turbulent intermittency." Fractals 5(3): 427-471.
  52. Schertzer, D., S. Lovejoy and P. Hubert (2002). An Introduction to Stochastic Multifractal Fields. ISFMA Symposium on Environmental Science and Engineering with related Mathematical Problems. A. Ern and W. Liu. Beijing, High Education Press. 4: 106-179.
  53. Schertzer, D., et al. (2002), Which chaos in the rainfall-runoff process? Hydrol. Sci., 47, 139-148.
  54. Schmitt, F., et al. (1995), Multifractal analysis of the Greenland Ice-core project climate data., Geophys. Res. Lett, 22, 1689-1692.
  55. Schmitt, F., et al. (1994), Empirical study of multifractal phase transitions in atmospheric turbulence, Nonlinear Processes in Geophysics, 1, 95-104.
  56. She, Z., S., and E. Levesque (1994), Phys. Rev. Lett., 72, 336.
  57. Steinhaus, H. (1954), Length, Shape and Area, Colloquium Mathematicum, III, 1-13.
  58. Tchiguirinskaia, I., et al. (2006), Wind extremes and scales: multifractal insights and empirical evidence, in EUROMECH Colloquium on Wind Energy, edited by P. S. Eds. J. Peinke, Springer-Verlag.
  59. Tuck, A. F., et al. (2004), Scale Invariance in jet streams: ER-2 data around the lower- stratospheric polar night vortex, Q. J. R. Meteorol. Soc., 130, 2423-2444.
  60. Van der Hoven, I. (1957), Power spectrum of horizontal wind speed in the frequency range from.0007 to 900 cycles per hour, Journal of Meteorology, 14, 160-164.
  61. Wilson, K. G. (1971), "Renormalization Group and Critical Phenomena. I. Renormalization Group and the Kadanoff Scaling Picture." Phys. Rev. B 4(9): 3174-3183.
  62. Yaglom, A. M. (1966), The influence on the fluctuation in energy dissipation on the shape of turbulent characteristics in the inertial interval, Sov. Phys. Dokl., 2, 26-30.