Academia.eduAcademia.edu

Outline

How Solvation Influences the SN2 versus E2 Competition

2022, The Journal of Organic Chemistry

https://doi.org/10.1021/ACS.JOC.1C02354

Abstract

We have quantum chemically investigated how solvation influences the competition between the SN2 and E2 pathways of the model F– + C2H5Cl reaction. The system is solvated in a stepwise manner by going from the gas phase, then via microsolvation of one to three explicit solvent molecules, then last to bulk solvation using relativistic density functional theory at (COSMO)-ZORA-OLYP/QZ4P. We explain how and why the mechanistic pathway of the system shifts from E2 in the gas phase to SN2 upon strong solvation of the Lewis base (i.e., nucleophile/protophile). The E2 pathway is preferred under weak solvation of the system by dichloromethane, whereas a switch in reactivity from E2 to SN2 is observed under strong solvation by water. Our activation strain and Kohn–Sham molecular orbital analyses reveal that solvation of the Lewis base has a significant impact on the strength of the Lewis base. We show how strong solvation furnishes a weaker Lewis base that is unable to overcome the high characteristic distortivity associated with the E2 pathway, and thus the SN2 pathway becomes viable.

References (20)

  1. Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry, Part A, 5th ed.; Springer: New York, 2007; pp 389-577. (b) Smith, M. B. March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 7th ed.; Wiley: New York, 2013; pp 425-656. (2) (a) DePuy, C. H.; Bierbaum, V. M. Gas-Phase Elimination Reactions of Ethers Induced by Amide and Hydroxide Ions. J. Am. Chem. Soc. 1981, 103, 5034-5038. (b) Jones, M. E.; Ellison, G. B. A Gas-Phase E2 Reaction: Methoxide Ion and Bromopropane. J. Am. Chem. Soc. 1989, 111, 1645-1654. (c) DePuy, C. H.; Gronert, S.; Mulin, A.; Bierbaum, V. M. Gas-Phase S N 2 and E2 Reactions of Alkyl Halides. J. Am. Chem. Soc. 1990, 112, 8650-8655. (d) Lum, R. C.; Grabowski, J. J. Intrinsic Competition between Elimination and Substitution Mechanisms Controlled by Nucleophile Structure. J. Am. Chem. Soc. 1992, 114, 9663-9665. (e) Carrascosa, E.; Meyer, J.; Michaelsen, T.; Stei, M.; Wester, R. Conservation of direct dynamics in sterically hindered S N 2/E2 reactions. Chem. Sci. 2018, 9, 693-701.
  2. Carrascosa, E.; Meyer, J.; Zhang, J.; Stei, M.; Michaelsen, T.; Hase, W. L.; Yang, L.; Wester, R. Imaging dynamic fingerprints of competing E2 and S N 2 reactions. Nat. Commun. 2017, 8, 25.
  3. Garver, J. M.; Fang, Y.-R.; Eyet, N.; Villano, S. M.; Bierbaum, V. M.; Westaway, K. C. A Direct Comparison of Reactivity and Mechanism in the Gas Phase and in Solution. J. Am. Chem. Soc. 2010, 132, 3808-3814. (h) Villano, S. M.; Kato, S.; Bierbaum, V. M. Deuterium Kinetic Isotope Effects in Gas-Phase S N 2 and E2 Reactions: Comparison of Experiment and Theory. J. Am. Chem. Soc. 2006, 128, 736-737. (i) Meyer, J.; Tajti, V.; Carrascosa, E.; Gyori, T.; Stei, M.; Michaelsen, T.; Bastian, B.; Czakó, G.; Wester, R. Atomistic dynamics of elimination and nucleophilic substitution disentangled for the F -+ CH 3 CH 2 Cl reaction. Nat. Chem. 2021, 13, 977-981.
  4. a) Gronert, S.; Merrill, G. N.; Kass, S. R. Fluoride-Induced Elimination of Ethyl Fluoride. The Importance of High-Level Optimizations in ab Initio and DFT Studied. J. Org. Chem. 1995, 60, 488-489. (b) Minato, T.; Yamabe, S. Theoretical Studies on Gas- Phase Reactions of Fluoride Ion with Fluoroethance: E2 and S N 2 Reactions. J. Am. Chem. Soc. 1985, 107, 4621-4626. (c) Gronert, S.; Kass, S. R. Theoretical Studies of Eliminations. 6. The Regiochemistry and Stereochemistry of the Gas-Phase Reactions of 3-Halocyclohex- enes with Fluoride. An ab Initio Study. J. Org. Chem. 1997, 62, 7991- 8000. (d) Gronert, S. Theoretical Studies of Elimination Reactions. 4. Gas Phase Reactions of F -with Cyclopentyl and Cyclohexyl Chloride. Stereochemical Preferences of E2 Eliminations. J. Org. Chem. 1994, 59, 7046-7050. (e) Gronert, S.; Freed, P. Theoretical Studies of Eliminations. 5. Intermolecular vs Intramolecular Eliminations: An ab Initio Study of the Gas-Phase reaction between NH 2 -with CH 3 CH 2 SCH 3 . J. Org. Chem. 1996, 61, 9430-9433.
  5. Bickelhaupt, F. M.; Baerends, E. J.; Nibbering, N. M. M. The Effect of Microsolvation on E2 and S N 2 Reactions: Theoretical Study of the Model System F -+ C 2 H 5 F + nHF. Chem. -Eur. J. 1996, 2, 196-207. (g) Hamlin, T. A.; Swart, M.; Bickelhaupt, F. M. Nucleophilic Substitution (S N 2): Dependence on Nucleophile, Leaving Group, Central Atom, Substituents, and Solvent. Chem- PhysChem 2018, 19, 1315-1330. (h) Vermeeren, P.; Hansen, T.; Jansen, P.; Swart, M.; Hamlin, T. A.; Bickelhaupt, F. M. A Unified Framework for Understanding Nucleophilicity and Protophilicity in the S N 2/E2 Competition. Chem. -Eur. J. 2020, 26, 15538-15548. (i) Ryding, M. J.; Debnarova, A.; Fernandez, I.; Uggerud, E. Nucleophilic substitution in reactions between partially hydrated superoxide anions and alkyl halides. J. Org. Chem. 2015, 80, 6133- 6142.
  6. a) Eyet, N.; Melko, J. J.; Ard, S. G.; Viggiano, A. A. Effect of higher order solvation and temperature on S N 2 and E2 reactivity. Int. J. Mass Spectrom. 2015, 378, 54-58. (b) Liu, X.; Zhang, J.; Yang, L.; Hase, W. L. How a solvent molecule affects competing elimination and substitution dynamics. Insight into mechanism evolution with increased solvation. J. Am. Chem. Soc. 2018, 140, 10995-11005.
  7. Oh, Y. H.; Im, S.; Park, S. W.; Lee, S. Y.; Chi, D. Y. S N 2/E2 Branching in Protic Solvents: A Mechanistic Study. Bull. Korean Chem. Soc. 2009, 30, 1535-1538. (d) Hu, W. P.; Truhlar, D. G. Modeling transition state solvation at the single-molecule level: Test of correlated ab Initio predictions against experiment for the gas-phase S N 2 reaction of microhydrated fluoride with methyl chloride. J. Am. Chem. Soc. 1994, 116, 7797-7800. (e) O'Hair, R. A.; Davico, G. E.; Hacaloglu, J.; Dang, T. T.; DePuy, C. H.; Bierbaum, V. M. Measurements of solvent and secondary kinetic isotope effects for the gas-phase S N 2 reactions of fluoride with methyl halides. J. Am. Chem. Soc. 1994, 116, 3609-3610. (f) Hirao, K.; Kebarle, P. S N 2 reactions in the gas phase. Transition states for the reaction: Cl -+ RBr = ClR + Br -, where R = CH 3 , C 2 H 5 , and iso-C 3 H 7 , from ab initio calculations and comparison with experiment. Solvent effects. Can. J. Chem. 1989, 67, 1262-1267. (g) Hamlin, T. A.; van Beek, B.; Wolters, L. P.; Bickelhaupt, F. M. Nucleophilic Substitution in Solution: Activation Strain Analysis of Weak and Strong Solvent Effects. Chem. -Eur. J. 2018, 24, 5927-5938.
  8. a) Vermeeren, P.; van der Lubbe, S. C. C.; Fonseca Guerra, C.; Bickelhaupt, F. M.; Hamlin, T. A. Understanding Chemical Reactivity Using the Activation Strain Model. Nat. Protoc. 2020, 15, 649-667.
  9. Bickelhaupt, F. M.; Houk, K. N. Analyzing Reaction Rates with the Distortion/Interaction-Activation Strain Model. Angew. Chem., Int. Ed. 2017, 56, 10070-10086; Angew. Chem. 2017, 129, 10204-10221. (6) (a) Bickelhaupt, F. M.; Baerends, E. J. Kohn-Sham Density Functional Theory: Predicting and Understanding Chemistry. In Reviews in Computational Chemistry; Lipkowitz, K. B., Boyd, D. B., Eds.; Wiley-VCH: New York, 2000; Vol. 15, pp 1-86. (b) van Meer, R.; Gritsenko, O. V.; Baerends, E. J. Physical Meaning of Virtual Kohn-Sham Orbitals and Orbital Energies: An Ideal Basis for the Description of Molecular Excitations. J. Chem. Theory Comput. 2014, 10, 4432-4441. (c) Zhao, L.; von Hopffgarten, M.; Andrada, D. M.; Frenking, G. Energy Decomposition Analysis. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2018, 8, e1345.
  10. a) Hansen, T.; Vermeeren, P.; Yoshisada, R.; Filippov, D. V.; van der Marel, G. A.; Codée, J. D.; Hamlin, T. A. How Lewis Acids Catalyze Ring-Openings of Cyclohexene Oxide. J. Org. Chem. 2021, 86, 3565-3573. (b) Galabov, B.; Koleva, G.; Schaefer, H. F.; Allen, W. D. Nucleophilic Influences and Origin of the S N 2 Allylic Effect. Chem. -Eur. J. 2018, 24, 11637-11648. (c) Hansen, T.; Vermeeren, P.; Bickelhaupt, F. M.; Hamlin, T. A. Origin of the α-Effect in S N 2 Reactions. Angew. Chem. 2021, 133, 21008-21016; Angew. Chem., Int. Ed. 2021, 60, 20840-20848.
  11. Svatunek, D.; Hansen, T.; Houk, K. N.; Hamlin, T. A. How the Lewis Base F -Catalyzes the 1,3-Dipolar Cycloaddition between Carbon Dioxide and Nitrilimines. J. Org. Chem. 2021, 86, 4320-4325. (9) (a) te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C.; van Gisbergen, S. J. A.; Snijders, J. G.; Ziegler, T. Chemistry with ADF. J. Comput. Chem. 2001, 22, 931-967.
  12. Fonseca Guerra, C.; Snijders, J. G.; te Velde, G.; Baerends, E. J. Towards an Order-N DFT Method. Theor. Chem. Acc. 1998, 99, 391- 403. (c) ADF2018.105. SCM Theoretical Chemistry; Vrije Universiteit: Amsterdam, The Netherlands. http://www.scm.com. (10) (a) Handy, N. C.; Cohen, A. J. Left-right correlation energy.
  13. Mol. Phys. 2001, 99, 403-412. (b) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 785-789.
  14. Swart, M.; Sola, M.; Bickelhaupt, F. M. Density Functional Calculations of E2 and S N 2 Reactions: Effects of the Choice of Method, Algorithm, and Numerical Accuracy. J. Chem. Theory Comput. 2010, 6, 3145-3152.
  15. van Lenthe, E.; Baerends, E. J.; Snijders, J. G. Relativistic total energy using regular approximations. J. Chem. Phys. 1994, 101, 9783- 9792.
  16. van Lenthe, E.; Baerends, E. J. Optimized Slater-Type Basis Sets for the Elements 1-118. J. Comput. Chem. 2003, 24, 1142-1156. (14) (a) Klamt, A.; Schuürmann, G. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc., Perkin Trans. 2 1993, 5, 799-805. (b) Klamt, A. Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena. J. Phys. Chem. 1995, 99, 2224-2235. (15) (a) Franchini, M.; Philipsen, P. H. T.; van Lenthe, E.; Visscher, L. Accurate Coulomb Potentials for Periodic and Molecular Systems through Density Fitting. J. Chem. Theory Comput. 2014, 10, 1994- 2004. (b) Franchini, M.; Philipsen, P. H. T.; Visscher, L. The Becke Fuzzy Cells Integration Scheme in the Amsterdam Density Functional Program Suite. J. Comput. Chem. 2013, 34, 1819-1827. (16) (a) Bérces, A.; Dickson, R. M.; Fan, L.; Jacobsen, H.; Swerhone, D.; Ziegler, T. An Implementation of the Coupled Perturbed Kohn-Sham Equations: Perturbation due to Nuclear Displacement. Comput. Phys. Commun. 1997, 100, 247-262.
  17. Jacobsen, H.; Bérces, A.; Swerhone, D. P.; Ziegler, T. Analytic Second Derivatives of Molecular Energies: a Density Funtional Implementation. Comput. Phys. Commun. 1997, 100, 263-276.
  18. Wolff, S. K. Analytical Second Derivatives in the Amsterdam Density Functional Package. Int. J. Quantum Chem. 2005, 104, 645- 659. (17) (a) Fukui, K. The Path of Chemical Reactions -the IRC Approach. Acc. Chem. Res. 1981, 14, 363-368. (b) Deng, L.; Ziegler, T.; Fan, L. A. Combined Density Functional and Intrinsic Reaction Coordinate Study on the Ground State Energy Surface of H 2 CO. J. Chem. Phys. 1993, 99, 3823-3835. (c) Deng, L.; Ziegler, T. The Determination of Intrinsic Reaction Coordinates by Density Func- tional Theory. Int. J. Quantum Chem. 1994, 52, 731-765.
  19. Sun, X.; Soini, T. M.; Poater, J.; Hamlin, T. A.; Bickelhaupt, F. M. PyFrag 2019-Automating the Exploration and Analysis of Reaction Mechanisms. J. Comput. Chem. 2019, 40, 2227-2233.
  20. Legault, C. Y. CYLview, 1.0b; Universitéde Sherbrooke: Sherbrooke, QC, Canada, 2009. http://www.cylview.org. (20) (a) Ess, D. H.; Houk, K. N. Distortion/Interaction Energy Control of 1,3-Dipolar Cycloaddition Reactivity. J. Am. Chem. Soc. 2007, 129, 10646-10647. (b) Ess, D. H.; Houk, K. N. Theory of 1,3- Dipolar Cycloadditions: Distortion/Interaction and Frontier Molec- ular Orbital Models. J. Am. Chem. Soc. 2008, 130, 10187-10198. https://doi.org/10.1021/acs.joc.1c02354 J. Org. Chem. 2022, 87, 1805-1813