Academia.eduAcademia.edu

Outline

On fuzzy order relations

Abstract

In this review article we present results regarding the fuzzy order relations.The concept of fuzzy order was introduced by generalizing the notion of reflexivity, antisymmetric and transitivity.

References (95)

  1. S. Abian and A.B. Brown, A theorem on partially ordered sets, with applications to fixed point theorems, Canad. J. Math., 13 (1961), 78-82. 1
  2. C.D. Aliprantis and K.C. Border, Infinite Dimensional Analysis, Springer Verlag, Heidelberg -1994. 1
  3. C.D. Alipantis, D.J. Brown and O. Burkinshaw, Edgeworth equilibria, Econometrica, 55, (1987), 1109-1137. 1
  4. I. Beg, σ-Complete fuzzy Riesz spaces, Resultate der Mathematik, 31 (1997), 292-299. 1
  5. I. Beg, Fixed points of fuzzy multivalued mappings with values in fuzzy ordered sets, J. Fuzzy Math., 6 (1998), 127-131. 1
  6. I. Beg, Extension of fuzzy positive linear operators, J. Fuzzy Math., 6(4)(1998), 849-855. 1, 1
  7. I. Beg, On fuzzy Zorn's lemma, Fuzzy Sets and Systems, 101(1) (1999), 181 -183. 1
  8. I. Beg, Fixed points of fuzzy monotone maps, Archivum Math., (BRNO) 35(1999), 141 -144. 1
  9. I. Beg, Fixed points of expansive mappings on fuzzy preordered sets, J. Fuzzy Math., 7(1999), 397 -400. 1
  10. I. Beg, A general theorem on selectors of fuzzy multifunctions, J. Fuzzy Math., 9(1)(2001), 97-101. 1
  11. I. Beg, Extension of fuzzy Zorn's lemma to nontransitive fuzzy relations, J. Fuzzy Math., 10(3)(2002), 681-685.79. 1
  12. I. Beg, Fuzzy ordering and completeness of fuzzy metric spaces, J. Fuzzy Math., 10(4)(2002), 789-795. 1
  13. I. Beg, Some applications of fuzzy ordered relations, CUBO, 6(1)(2004), 103-114. 1
  14. I. Beg, Fuzzy multivalued functions, Bull. Allahabad Math. Soc., 21(2006), 41-104. 1
  15. I. Beg and S. Ashraf, Fuzzy equivalence relations, Kuwait J. Sci.and Eng., (35)(1A)(2008), 33-51. 1
  16. I. Beg and S. Ashraf, Fuzzy similarity and measure of similarity with Lukasiewicz implicator, New Math. and Natural Computation, 4(2)(2008), 191-206. 1
  17. I. Beg and S. Ashraf, Fuzzy dissimilarity and distance functions, Fuzzy Information and Engineering, 2 (2009), 205-217. 1
  18. I. Beg and S. Ashraf, Fuzzy inclusion and fuzzy similarity with Gödel implication operator, New Math. and Natural Computation, 5(3) (2009) 617-633. 1
  19. I. Beg and S. Ashraf, Similarity measures for fuzzy sets, Applied and Computational Math., 8(2) (2009), 192-202. 1
  20. I. Beg and S. Ashraf, Fuzzy Relations (ISBN 978-3-8383-2069-4), Lambert Academic Publisher, Germany 2009 1
  21. I. Beg and S. Ashraf, Fuzzy transitive relations, Fuzzy Systems and Math., 24(4) (2010), 162-169. 1
  22. I. Beg and S. Ashraf, Fuzzy set of inclusion under Kleene's implicator, Applied and Computational Math., 10(1)(2011), 65-77. 1
  23. I. Beg and S. Ashraf, Fuzzy relational calculus, Bulletin of the Malaysian Mathematical Sciences Society -to appear in 2013 1
  24. I. Beg and N. Butt, (Im)possibility theorems in fuzzy framework, Critical Review; a publication of Society for Mathematics of Uncertainity, IV(2010), 1-11. 1
  25. I. Beg and M. Islam, Fuzzy Riesz spaces, J. Fuzzy Math., 2(1) (1994), 211-229. 1, 1, 1
  26. I. Beg and M. Islam, Fuzzy ordered linear spaces, J. Fuzzy Math., 3(3) (1995), 659-670. 1, 1, 1
  27. I. Beg and M. Islam, Fuzzy Archimedean spaces, J. Fuzzy Math., 5(2)(1997),413-423. 1, 1, 1
  28. T.X. Bergstrom, Maximal elements of acyclic relations on compact sets, J. Economic Theory, 10 (1975), 403 -404. 1
  29. A. Billot, Economic Theory of Fuzzy Equilibria, Springer -Verlag, Berlin -1992. 1
  30. G. Birkhoff, Lattice Theory, 3rd ed., Amer. Math. Soc. Colloq. Publ., Vol 25, AMS Providence, R.I. 1967. 1
  31. B.K. Bose and D. Sahani, Fuzzy mappings and fixed point theorems, Fuzzy Sets and Systems, 21(1987), 53-58. 1
  32. G.J. Brown, A note on fuzzy sets, Inform. and Control, 18(1971), 32-39. 1
  33. J. Caristi, Fixed point theorems for mapping satisfying inwardness conditions, Trans. Amer. Math. Soc., 215 (1976), 241-251. 1
  34. J. Caristi and W.A. Kirk, Geometric fixed point theory and inwardness conditions, Proceedings of the Conf. on Geometry of Metric and Linear Spaces, Lecture Notes in Mathematics 490, Springer Verlag, 1975. 1, 1
  35. E.W. Chapin, Jr. Set valued set theory, Part I, Notre Dame J. Formal Logic, XV(4) (1974), 619-634. 1
  36. E.W. Chapin, Jr. Set valued set theory, Part II, Notre Dame J. Formal Logic, XVI (2) (1975), 255-267. 1
  37. H.W. Corley, An existence results for maximizations with respect to cones, J. Optimization Theory and Appl., 34(1980), 277 -281. 1
  38. H.W. Corley, Existence and Lagrangian duality for maximization of set-valued functions, J. Optimization Theory and Appl., 54(1987), 489 -501. 1
  39. R. Cristescu, Ordered Vector Spaces and Linear Operators, Editura Academiei, Bucharest -1976.
  40. A.C. Davis, A characterization of complete lattices, Pacific J. Math., 5(1955), 311-319. 1
  41. G. Debreu, Mathematical Economics: Twenty papers of Gerard Debreu, Cambridge University Press, Cambridge-1983. 1
  42. K.J. Devin, The Joy of Sets: Fundamentals of contemporary set theory, Springer-Verlag, New York -1993. 1
  43. D. Dubois and H. Prade, Fundamentals of Fuzzy Sets, Kluwer Academic Publishers, Dordrecht -2000. 1
  44. D. Dubois and H. Prade, On possibility theory, formal concept analysis and granulation, Applied and Computational Math., (2011), special issue, in press. 1
  45. I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47(1974), 324-353. 1
  46. I. Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Soc. (New Series), 1(1979), 443-474. 1
  47. K. Fan, A generalization of Tychonoff 's fixed point theorem, Math. Ann., 142(1961), 305 -310. 1
  48. J.X. Fang, On fixed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems, 46(1992), 107-113. 1
  49. S.G. Gal, Approximate selection for fuzzy-set-valued mappings and applications, J. Fuzzy Math., 3(40(1995), 941-947.
  50. K. Goebel and W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Stud. Adv. Math., 28, Cambridge University Press, London -1990 1
  51. O. Hadzic, Fixed point theorems for multivalued mappings in some classes of fuzzy metric spaces, Fuzzy Sets and Systems, 29(1989), 115-125. 1
  52. P.R. Halmos, Naive Set Theory, Springer-Verlag, New York -1974. 1
  53. P.J. He, The variational principle in fuzzy metric spaces and its applications, Fuzzy Sets and Systems 45(1992), 389-394. 1, 1
  54. S. Heilpern, Fuzzy mappings and fixed point theorems, J. Math. Anal. Appl., 83(1981), 566-569. 1
  55. U. Hohle and L.N. Stout, Foundation of fuzzy sets, Fuzzy Sets and Systems 40(1991), 257-296. 1
  56. P. Howard and J.E. Rubin, Consequences of The Axiom of Choice, American Mathematical Society, Providence, RI-1998. 1
  57. T. Jech, The Axiom of Choice, North Holland, Amsterdam -1973. 1
  58. T. Jech, Set Theory, Academic Press, New York -1978. 1
  59. J.S. Jung, C.Y. Cho and J.K. Kim, Minimization theorems for fixed point theorem in fuzzy metric spaces and applications, Fuzzy Sets and Systems, 61(1994), 199-207.
  60. J.S. Jung, Y.J. Cho, S.M. Kang and S.S. Chang, Coincidence theorems for set valued mappings and Ekeland's variational principle in fuzzy metric spaces, Fuzzy Sets and Systems, 79(1996), 239-250. 1
  61. O. Kaleva, A note on fixed points for fuzzy mappings, Fuzzy Sets and Systems, 15(1985), 99-100. 1
  62. O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Sets and Systems, 12(1984), 215-229. 1
  63. J.L. Kelley, General Topology, D.Von Nostrand Co., Inc., New York -1965. 1
  64. E.E. Kerre, Basic principles of fuzzy set theory for the representation and manipulation of imprecision and uncertainty. In: Introduction to the Basic Principles of Fuzzy Set Theory and some of its Applications, E. E. Kerre, ed., Communication and Cognition, Gent, second revised edition (1993), 1-158. 1
  65. E.E. Kerre, The impact of fuzzy set theory on contemporary mathematics, Applied and Computational Math., (2011), special issue, in press. 1
  66. W.A. Kirk, Caristi's fixed point theorem and metric convexity, Colloq. Math., XXXVI (1976), 81-86. 1, 1
  67. B. Knaster, Un theoreme sur les fonctions d'ensembles, Ann. Soc. Polon. Math., 6(1928), 133-134. 1
  68. S. Kundu, Similarity relations, fuzzy linear orders and fuzzy partial orders, Fuzzy Sets and Systems, 109 (2000), 419 -428. 1
  69. B.S. Lee and S.J. Cho, A fixed point theorem for contractive-type fuzzy mappings, Fuzzy Sets and Systems, 61 (1994), 309-312. 1
  70. H.X. Li and V.C. Yen, Fuzzy Sets and Fuzzy Decision-Making, CRC Press. Inc., London -1995. 1
  71. J. Lukasiewicz, A numerical interpretation of the theory of propositions, Ruch Filozoficzny 23(1922), 92-94. 1
  72. J.M. Merigo and A.M. Gil-Lafuente, An overview of fuzzy research in the ISI web of knowledge, Proc. World Congress on Engineering Vol. I , London-2009 (ISBN: 978-988-17012-5-1). 1
  73. J.C. Moore, Zermelo's axiom of choice: Its origins, development, and influence, Springer-Verlag, New York-1982. 1
  74. C.V. Negoita and D. A. Ralescu, Applications of fuzzy sets to system analysis, Fuzzy Sets and Systems, 1(1978), 155-167. 1
  75. V. Novak, Fuzzy Sets and Their Applications, Adam Hilger, Bristol, England -1989. 1
  76. S.A. Orlovsky, Decision making with a fuzzy preference relation, Fuzzy Sets and Systems, 1(1978), 155 -167. 1
  77. J.Y. Park and J. U. Jeong, Common fixed points of fuzzy mappings, Fuzzy Sets and Systems, 59(1993), 231-235. 1
  78. N. Prati, On the comparison between fuzzy set axiomatizations, Fuzzy Sets and Systems, 46(1992), 167-175. 1
  79. N. Prati, On the notion of fuzzy set, Stochastica XIII-1(1992), 101-114. 1
  80. G.S. Rhie and I. A. Hwang,On the fuzzy Hahn-Banach theorem-an analytic form, Fuzzy Sets and Systems 108(1999), 117-121. 1
  81. M.K. Richter, Revealed preference theory, Econometrica 34(1966), 635-645. 1
  82. H. Rubin and J.E. Rubin, Equivalence of the Axiom of Choice, North Holland, Amsterdam -1963. 1
  83. B. Russell, Vagueness, Australian J. Phil., 1(1)(1923), 84-92 1
  84. R.E. Smithson, Fixed points of order preserving multifunctions, Proc. Amer. Math. Soc., 28(1) (1971), 304-310. 1
  85. E. Szpilrajn, Sur l'extension de l'ordre partiel, Fundamenta Mathematicae, 16(1930), 386-389. 1
  86. A. Tarski, A lattice theoretic fixed point theorem and its applications, Pacific J. Math., 5(1955), 285-309. 1
  87. P. Venugopalan, Fuzzy ordered sets, Fuzzy Sets and Systems, 46(1992), 221-226. 1, 1
  88. P. Vijayaraju and M. Marudai, Fixed point for pair of maps in fuzzy metric spaces, J. Fuzzy Math., 8(1)(2000), 117-122. 1
  89. A.C. Zaanen, Introduction to Operator Theory in Riesz Spaces, Springer-Verlag, Berlin -1997.
  90. L.A. Zadeh, Fuzzy Sets, Inform. and Control, 8(1965), 338-353. 1, 1
  91. L.A. Zadeh, Similarity relations and fuzzy orderings, Inform. Sciences, 3(1971), 177-200. 1, 1
  92. E. Zeidler, Nonlinear Functional Analysis I: Fixed Point Theory, Springer Verlag, New York -1986. 1
  93. J. Zhou and G. Tian, Transfer methods in characterizing the existence of maximal elements for binary relations on compact or noncompact sets, SIAM J. on Optimization, 2(1992), 360 -375. 1
  94. H.J. Zimmermann, Fuzzy Set Theory and its Applications, Kluwer Academic Publishers, Dorderecht -1991. 1
  95. M. Zorn, A remark on method in transfinite algebra, Bull. Amer. Math. Soc., 41(1935), 667 -670.