Characterisation of Grasp Quality Metrics
2017, Journal of Intelligent and Robotic Systems
https://doi.org/10.1007/S10846-017-0562-1Abstract
Robot grasp quality metrics are used to evaluate, compare and select robotic grasp configurations. Many of them have been proposed based on a diversity of underlying principles and to assess different aspects of the grasp configurations. As a consequence, some of them provide similar information but other can provide completely different assessments. Combinations of metrics have been proposed in order to provide global indexes, but these attempts have shown the difficulties of merging metrics with different numerical ranges and even physical units. All these studies have raised the need of a deeper knowledge in order to determine independent grasp quality metrics which enable a global assessment of a grasp, and a way to combine them. This paper presents an exhaustive study in order to provide numerical evidence for these issues. Ten quality metrics are used to evaluate a set of grasps planned by a simulator for 7 different robot hands over a set of 126 object models. Three statistical analysis, namely, variability, correlation and sensitivity, are performed over this extensive database. Results and graphs presented allow to set practical thresholds for each quality metric, select independent metrics, and determine the robustness of each metric,providing a reliability indicator under pose uncertainty. The results from this paper are
References (45)
- Aleotti, A., Caselli, S.: Grasp recognition in virtual real- ity for robot pregrasp planning by demonstration. Pro- ceedings -IEEE International Conference on Robotics and Automation 2006, 2801 (2006)
- Balasubramanian, R., Xu, L., Brook, P.D., Smith, J.R., Matsuoka, Y.: Physical human interactive guidance: Identifying grasping principles from human-planned grasps. IEEE Trans. on Robotics 28(4), 899-910 (2012)
- Bicchi, A.: Hands for dexterous manipulation and ro- bust grasping: a difficult road toward simplicity. IEEE Transactions on Robotics and Automation 16(6), 652- 662 (2000)
- Bohg, J., Morales, A., Asfour, T., Kragic, D.: Data- driven grasps synthesis -a survey. IEEE Transactions on Robotics 30(2), 289 -309 (2014)
- Boivin, E., Sharf, I., Doyon, M.: Optimum grasp of planar and revolute objects with gripper geometry constraints. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 1, pp. 326 -332 (2004)
- Chinellato, E., Morales, A., Fisher, R., del Pobil, A.: Visual quality measures for characterizing planar robot grasps. Systems, Man, and Cybernetics, Part C: Applica- tions and Reviews, IEEE Transactions on 35(1), 30 -41 (2005)
- Deutsche Forschungsgemeinschaft: KIT ObjectModels Web Database. Object Models of Household Items. http://i61p109.ira.uka.de/ObjectModelsWebUI/ index.php?section=home
- Diankov, R.: Grasping module. http://openrave.org/ docs/latest_stable/openravepy/databases.grasping/
- Diankov, R.: Automated construction of robotic manip- ulation programs. Ph.D. thesis, Carnegie Mellon Univer- sity, Robotics Institute (2010)
- Diankov, R., Kuffner, J.: Openrave: A planning architec- ture for autonomous robotics. Tech. Rep. CMU-RI-TR- 08-34, Robotics Institute, Pittsburgh, PA (2008)
- Ding, D., Lee, Y.H., Wang, S.: Computation of 3-d form- closure grasps. IEEE Transactions on Robotics and Au- tomation 17(4), 515 -522 (2001)
- Ferrari, C., Canny, J.: Planning optimal grasps. Proceed- ings 1992 IEEE International Conference on Robotics and Automation pp. 2290-2295 (1992)
- Fieller, E.C., Hartley, H.O., Pearson, E.S.: Tests for rank correlation coefficients. I. Biometrika 44(3-4), 470-481 (1957)
- Hang, K., Pokorny, F.T., Kragic, D.: Friction coefficients and grasp synthesis. In: IEEE/RSJ International Con- ference on Intelligent Robots and Systems. IEEE (2013)
- Hester, R., Cetin, M., Kapoor, C., Tesar, D.: A criteria- based approach to grasp synthesis. In: Robotics and Automation, 1999. Proceedings. 1999 IEEE International Conference on, vol. 2, pp. 1255-1260 vol.2 (1999)
- Kim, B.H., Oh, S.R., Yi, B.J., Suh, I.H.: Optimal grasp- ing based on non-dimensionalized performance indices. In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems, vol. 2, pp. 949 -956 (2001)
- Kim, J.O., Khosla, P.: Dexterity measures for design and control of manipulators. Proceedings IROS Workshop on Intelligent Robots and Systems pp. 758-763 (1991)
- Kirkpatrick, D.G., Mishra, B., Yap, C.K.: Quantitative steinitz's theorems with applications to multifingered grasping. In: Proceedings of the twenty-second annual ACM symposium on Theory of computing, STOC '90, pp. 341-351. ACM, New York, NY, USA (1990)
- León, B., Morales, A., Sancho-Bru, J.: From Robot to Human Grasping Simulation, Cognitive Systems Mono- graphs, vol. 19. Springer International Publishing (2013)
- Leon, B., Rubert, C., Sancho-Bru, J., Morales, A.: Evalu- ation of prosthetic hands prehension using grasp quality measures. In: Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on, pp. 3501- 3506 (2013)
- Leon, B. and Rubert, C. and Sancho-Bru, J. and Morales, A.: Characterization of grasp quality measures for eval- uating robotic hands prehension. In: Robotics and Au- tomation (ICRA), 2014 IEEE International Conference on, pp. 3688-3693 (2014)
- León, Beatriz and Sancho-Bru, Joaquín and Jarque-Bou, Néstor and Morales, Antonio and Roa, Máximo : Eval- uation of human prehension using grasp quality mea- sures. International Journal of Advanced Robotic Sys- tems (2012)
- Li, Z., Sastry, S.: Task-oriented optimal grasping by mul- tifingered robot hands. IEEE Journal of Robotics and Automation, 4(1), 32 -44 (1987)
- Liegeois, A.: Automatic supervisory control of the con- figuration and behavior of multibody mechanisms. IEEE Trans. Systems, Man, and Cybernetics 7(12), 842-868 (1977)
- Miller, A.T., Allen, P.K.: Examples of 3D grasp qual- ity computations. In: Proceedingsof the IEEE Interna- tional Conference on Robotics and Automation, vol. 2, pp. 1240-1246. IEEE (1999)
- Mirtich, B., Canny, J.: Easily computable optimum grasps in 2-d and 3-d. In: Proceedings IEEE International Conference on Robotics and Automation, pp. 739-747 (1994)
- Mishra, B.: Grasp metrics: Optimality and complexity. In: Proceedings of the Workshop on Algorithmic Foun- dations of Robotics, WAFR, pp. 137-165. A. K. Peters, Ltd., Natick, MA, USA (1995)
- OttoBock: Michelangelo Hand. http://www. living-with-michelangelo.com/gb/home/
- Ponce, J., Sullivan, S., Sudsang, A., Boissonnat, J.D., Merlet, J.P.: On computing four-finger equilibrium and force-closure grasps of polyhedral objects. The Interna- tional Journal of Robotics Research 16(1), 11-35 (1997)
- Roa, M.A., Suárez, R.: Grasp quality measures: review and performance. Autonomous Robots pp. 1-24 (2014)
- Rombokas, E., Brook, P., Smith, J.R., Matsuoka, Y.: Bi- ologically inspired grasp planning using only orthogonal approach angles. In: Biomedical Robotics and Biomecha- tronics (BioRob), 2012 4th IEEE RAS & EMBS Interna- tional Conference on, pp. 1656-1661 (2012)
- Rubert, C.: Openhand grasp database viewer. URL https://github.com/Cescuder/OpenHand-Viewer
- Rubert, C., Leon, B., Morales, A.: Grasp quality metrics for robot hands benchmarking. In: Humanoid Robots, 2014 IEEE/RSJ International Conference on (2014)
- Rubert, C., Morales, A.: Comparison between grasp qual- ity metrics and the anthropomorphism index for the eval- uation of artificial hands. In: 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 1352-1357 (2016). DOI 10.1109/BIOROB. 2016.7523820
- Sahbani, A., El-Khoury, S., Bidaud, P.: An overview of 3d object grasp synthesis algorithms. Robotics and Au- tonomous Systems 60(3), 326 -336 (2012)
- Salisbury, J.K., Craig, J.J.: Articulated Hands: Force Control and Kinematic Issues. The International Journal of Robotics Research 1(1), 4-17 (1982)
- Savescu, A.V., Latash, M.L., Zatsiorsky, V.M.: A tech- nique to determine friction at the fingertips. Journal of Applied Biomechanics 24(1), 43-50 (2008)
- Schunk GmbH & Co. KG: Schunk SDL Hand 40. SciPy Developers: Scipy. http://scipy.org/
- Shadow Robot Company: Shadow Hand. http://www. shadowrobot.com/products/dexterous-hand/
- Shimoga, K.B.: Robot grasp synthesis algorithms: A sur- vey. International Journal of Robotic Research 15(3), 230-266 (1996)
- Weisz, J., Allen, P.K.: Pose Error Robust Grasping from Contact Wrench Space Metrics. In: IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 557-562 (2012)
- Willow Garage: PR2. http://www.willowgarage.com/ pages/pr2/overview
- Xiong, C., Li, Y., Ding, H., Xiong, Y.L.: On the dynamic stability of grasping. I. J. Robotic Res. 18(9), 951-958 (1999)
- Yale OpenHand Project: Model T. http://www.eng. yale.edu/grablab/openhand/
- Zheng, Y., Qian, W.H.: Coping with the grasping un- certainties in force-closure analysis. p. 311-327. SAGE Publications, The International Journal of Robotics Re- search (2005)