Abstract
In this paper, we study the “Multi-Robot Routing problem” with min–max objective (MRR-MM) in detail. It involves the assignment of sequentially ordered tasks to robots such that the maximum cost of the slowest robot is minimized. The problem description, the different types of formulations, and the methods used across various research communities are discussed in this paper. We propose a new problem formulation by treating this problem as a bipartite graph with a permutation matrix to solve it. A comparative study is done between three methods: Stochastic simulated annealing, deterministic mean-field annealing, and a heuristic-based graph search method. Each method is investigated in detail with several data sets (simulation and real-world), and the results are analysed and compared with respect to scalability, computational complexity, optimality, and its application to real-world scenarios. The paper shows that the heuristic method produces results very quickly with good scalabili...
References (67)
- Claes, D.; Oliehoek, F.; Baier, H.; Tuyls, K. Decentralised online planning for multi-robot warehouse commissioning. In Proceed- ings of the 16th Conference on Autonomous Agents and MultiAgent Systems, International Foundation for Autonomous Agents and Multiagent Systems, São Paulo, Brazil, 8-12 May 2017; pp. 492-500.
- Baxter, J.L.; Burke, E.; Garibaldi, J.M.; Norman, M. Multi-robot search and rescue: A potential field based approach. In Autonomous Robots and Agents; Springer: Berlin/Heidelberg, Germany, 2007; pp. 9-16.
- Burgard, W.; Moors, M.; Stachniss, C.; Schneider, F.E. Coordinated multi-robot exploration. IEEE Trans. Robot. 2005, 21, 376-386.
- Fox, D.; Ko, J.; Konolige, K.; Limketkai, B.; Schulz, D.; Stewart, B. Distributed multirobot exploration and mapping. Proc. IEEE 2006, 94, 1325-1339. [CrossRef]
- Groth, C.; Henrich, D. Single-shot learning and scheduled execution of behaviors for a robotic manipulator. In Proceedings of the ISR/Robotik 2014, 41st International Symposium on Robotics, Munich, Germany, 2-3 June 2014; pp. 1-6.
- Lemaire, T.; Alami, R.; Lacroix, S. A distributed tasks allocation scheme in multi-UAV context. In Proceedings of the IEEE International Conference on Robotics and Automation, New Orleans, LA, USA, 26 April-1 May 2004; Volume 4, pp. 3622-3627.
- Gini, M. Multi-robot allocation of tasks with temporal and ordering constraints. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4-9 February 2017.
- Zhang, Y.; Parker, L.E. Multi-robot task scheduling. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6-10 May 2013; pp. 2992-2998.
- Parker, J.; Nunes, E.; Godoy, J.; Gini, M. Exploiting spatial locality and heterogeneity of agents for search and rescue teamwork. J. Field Robot. 2016, 33, 877-900. [CrossRef]
- Bektas, T. The multiple traveling salesman problem: An overview of formulations and solution procedures. Omega 2006, 34, 209-219. [CrossRef]
- McIntire, M.; Nunes, E.; Gini, M. Iterated multi-robot auctions for precedence-constrained task scheduling. In Proceedings of the 2016 International Conference on Autonomous Agents & Multiagent Systems. International Foundation for Autonomous Agents and Multiagent Systems, Singapore, 9-13 May 2016; pp. 1078-1086.
- Sarkar, C.; Paul, H.S.; Pal, A. A scalable multi-robot task allocation algorithm. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation ICRA, Brisbane, QLD, Australia, 21-25 May 2018; pp. 1-9.
- Gombolay, M.; Wilcox, R.; Shah, J. Fast Scheduling of Multi-Robot Teams with Temporospatial Constraints. In Proceedings of the Robotics: Science and Systems IX, Berlin, Germany, 24-28 June 2013.
- Clausen, J. Branch and Bound Algorithms-Principles and Examples; Department of Computer Science, University of Copenhagen: Copenhagen, Denmark, 1999.
- Liu, C.; Kroll, A. A centralized multi-robot task allocation for industrial plant inspection by using a* and genetic algorithms. In Proceedings of the International Conference on Artificial Intelligence and Soft Computing, Zakopane, Poland, 29 April-3 May 2012; pp. 466-474.
- Wang, J.; Gu, Y.; Li, X. Multi-robot task allocation based on ant colony algorithm. J. Comput. 2012, 7, 2160-2167. [CrossRef]
- Li, X.; Ma, H.x. Particle swarm optimization based multi-robot task allocation using wireless sensor network. In Proceedings of the 2008 International Conference on Information and Automation, Changsha, China, 20-23 June 2008; pp. 1300-1303.
- Mosteo, A.R.; Montano, L. Simulated annealing for multi-robot hierarchical task allocation with flexible constraints and objective functions. In Proceedings of the Workshop on Network Robot Systems: Toward Intelligent Robotic Systems Integrated with Environments, IROS, Beijing, China, 9-15 October 2006.
- Mitiche, H.; Boughaci, D.; Gini, M. Efficient heuristics for a time-extended multi-robot task allocation problem. In Proceedings of the 2015 First International Conference on New Technologies of Information and Communication (NTIC), Mila, Algeria, 8-9 November 2015; pp. 1-6.
- Maheswaran, R.T.; Tambe, M.; Bowring, E.; Pearce, J.P.; Varakantham, P. Taking DCOP to the real world: Efficient complete solutions for distributed multi-event scheduling. In Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems, New York, NY, USA, 23-23 July 2004; pp. 310-317.
- Lagoudakis, M.G.; Markakis, E.; Kempe, D.; Keskinocak, P.; Kleywegt, A.J.; Koenig, S.; Tovey, C.A.; Meyerson, A.; Jain, S. Auction-Based Multi-Robot Routing. Robot. Sci. Syst. 2005, 5, 343-350
- Liu, L.; Shell, D.A.; Michael, N. From selfish auctioning to incentivized marketing. Auton. Robot. 2014, 37, 417-430. [CrossRef]
- Ma, H.; Koenig, S. Optimal target assignment and path finding for teams of agents. arXiv 2016, arXiv:1612.05693.
- Ng, W.; Mak, K.; Zhang, Y. Scheduling trucks in container terminals using a genetic algorithm. Eng. Optim. 2007, 39, 33-47.
- Parker, L.E. L-ALLIANCE: A Mechanism for Adaptive Action Selection in Heterogeneous Multi-Robot Teams; Technical Report; Oak Ridge National Lab.: Oak Ridge, TN, USA, 1995.
- Turpin, M.; Michael, N.; Kumar, V. An approximation algorithm for time optimal multi-robot routing. In Algorithmic Foundations of Robotics XI; Springer: Berlin/Heidelberg, Germany, 2015; pp. 627-640.
- Franca, P.M.; Gendreau, M.; Laporte, G.; Muller, F.M. The m-Traveling Salesman Problem with Minmax Objective. Transp. Sci. JSTOR 1995, 29, 267-275. [CrossRef]
- Kato, S.; Nishiyama, S.; Takeno, J. Coordinating Mobile Robots By Applying Traffic Rules. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Raleigh, NC, USA, 7-10 July 1992; Volume 3, pp. 1535-1541.
- Van Den Berg, J.P.; Overmars, M.H. Prioritized motion planning for multiple robots. In Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems ICRA 2005, Edmonton, AB, Canada, 2-6 August 2005; pp. 430-435.
- Liu, M.; Ma, H.; Li, J.; Koenig, S. Task and path planning for multi-agent pickup and delivery. In Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS), Montreal, QC, Canada, 13-17 May 2019.
- Gerkey, B.P.; Matarić, M.J. A formal analysis and taxonomy of task allocation in multi-robot systems. Int. J. Robot. Res. 2004, 23, 939-954. [CrossRef]
- Korsah, G.A.; Stentz, A.; Dias, M.B. A comprehensive taxonomy for multi-robot task allocation. Int. J. Robot. Res. 2013, 32, 1495-1512. [CrossRef]
- Nunes, E.; Manner, M.; Mitiche, H.; Gini, M. A taxonomy for task allocation problems with temporal and ordering constraints. Robot. Auton. Syst. 2017, 90, 55-70. [CrossRef]
- Gerkey, B.P.; Mataric, M.J. Multi-robot task allocation: Analyzing the complexity and optimality of key architectures. In Proceed- ings of the 2003 IEEE International Conference on Robotics and Automation, Taipei, Taiwan, 14-19 September 2003; Volume 3, pp. 3862-3868.
- Brucker, P. Scheduling Algorithms; Springer: Berlin/Heidelberg, Germany, 2004.
- Parker, L.E. ALLIANCE: An architecture for fault tolerant multirobot cooperation. IEEE Trans. Robot. Autom. 1998, 14, 220-240.
- Garey, M.R.; Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-Completeness (Series of Books in the Mathematical Sciences);
- W. H. Freeman: San Francisco, CA, USA, 1979.
- Arkin, E.M.; Hassin, R.; Levin, A. Approximations for Minimum and Min-Max Vehicle Routing Problems. J. Algorithms 2006, 59, 1-18. [CrossRef]
- Diaby, M. Linear programming formulation of the multi-depot multiple traveling salesman problem with differentiated travel costs. Travel. Salesm. Probl. Theory Appl. 2010, 2010, 257-282.
- Oberlin, P.; Rathinam, S.; Darbha, S. A transformation for a heterogeneous, multiple depot, multiple traveling salesman problem. In Proceedings of the 2009 American Control Conference, St. Louis, MO, USA, 10-12 June 2009; pp. 1292-1297.
- Naccache, S.; Côté, J.F.; Coelho, L.C. The multi-pickup and delivery problem with time windows. Eur. J. Oper. Res. 2018, 269, 353-362. [CrossRef]
- Carlsson, J.; Ge, D.; Subramaniam, A. Solving min-max multi-depot vehicle routing problem. Lect. Glob. Optim. 2009, 55, 31-46.
- Bish, E.K.; Chen, F.Y.; Leong, Y.T.; Nelson, B.L.; Ng, J.W.C.; Simchi-Levi, D. Dispatching vehicles in a mega container terminal. In Container Terminals and Cargo Systems; Springer: Berlin/Heidelberg, Germany, 2007; pp. 179-194.
- Xu, Z.; Xu, D.; Zhu, W. Approximation results for a min-max location-routing problem. Discret. Appl. Math. 2012, 160, 306-320.
- Nace, D.; Pióro, M. Max-min fairness and its applications to routing and load-balancing in communication networks: A tutorial. IEEE Commun. Surv. Tutor. 2008, 10, 5-17. [CrossRef]
- Applegate, D.; Cook, W.; Dash, S.; Rohe, A. Solution of a min-max vehicle routing problem. INFORMS J. Comput. 2002, 14, 132-143. [CrossRef]
- Pěnička, R.; Faigl, J.; Vá ňa, P.; Saska, M. Dubins orienteering problem. IEEE Robot. Autom. Lett. 2017, 2, 1210-1217. [CrossRef]
- Xu, Z.; Rodrigues, B. A 3/2-approximation algorithm for multiple depot multiple traveling salesman problem. In Proceedings of the Scandinavian Workshop on Algorithm Theory, Bergen, Norway, 21-23 June 2010; pp. 127-138.
- Even, G.; Garg, N.; Könemann, J.; Ravi, R.; Sinha, A. Min-max tree covers of graphs. Oper. Res. Lett. 2004, 32, 309-315. [CrossRef]
- Christofides, N.; Korman, S. Note-A computational survey of methods for the set covering problem. Manag. Sci. 1975, 21, 591-599. [CrossRef]
- Fisher, M.L.; Jaikumar, R. A generalized assignment heuristic for vehicle routing. Networks 1981, 11, 109-124. [CrossRef]
- Turner, J.S. Approximation algorithms for the shortest common superstring problem. Inf. Comput. 1989, 83, 1-20. [CrossRef]
- Cordeau, J.F.; Laporte, G. The dial-a-ride problem: Models and algorithms. Ann. Oper. Res. 2007, 153, 29-46. [CrossRef]
- Luo, L.; Chakraborty, N.; Sycara, K. A distributed algorithm for constrained multi-robot task assignment for grouped tasks. J. Contrib. 2018. [CrossRef]
- Faigl, J.; Vá ňa, P.; Pěnička, R.; Saska, M. Unsupervised learning-based flexible framework for surveillance planning with aerial vehicles. J. Field Robot. 2019, 36, 270-301. [CrossRef]
- Mohamed Bin Zayed International Robotics Challenge (MBZIRC) 2017. Available online: http://www.mbzirc.com (accessed on 9 November 2021).
- Kuhn, H.W. The Hungarian method for the assignment problem. Nav. Res. Logist. Q. 1995, 2, 83-97. [CrossRef]
- Burkard, R.E.; Cela, E. Linear assignment problems and extensions. In Handbook of Combinatorial Optimization; Springer: Berlin/Heidelberg, Germany, 1999; pp. 75-149.
- Hakkinen, J.; Lagerholm, M.; Peterson, C.; Soderberg, B. Local routing algorithms based on Potts neural networks. IEEE Trans. Neural Netw. 2000, 11, 970-977. [CrossRef]
- Soderberg, B.; Jonsson, H. Deterministic annealing and nonlinear assignment. arXiv 2001, arXiv:cond-mat/0105321.
- Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671-680. [CrossRef] [PubMed]
- Ohlsson, M.; Peterson, C.; Söderberg, B. Neural networks for optimization problems with inequality constraints: The knapsack problem. Neural Comput. 1993, 5, 331-339. [CrossRef]
- Sinkhorn, R.; Knopp, P. Concerning nonnegative matrices and doubly stochastic matrices. Pac. J. Math. 1967, 21, 343-348.
- Grisetti, G.; Stachniss, C.; Burgard, W. Improved techniques for grid mapping with rao-blackwellized particle filters. IEEE Trans. Robot. 2007, 23, 34-46. [CrossRef]
- Hart, P.E.; Nilsson, N.J.; Raphael, B. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 1968, 4, 100-107. [CrossRef]
- Liu, L.; Shell, D.A. An anytime assignment algorithm: From local task swapping to global optimality. Auton. Robot. 2013, 35, 271-286. [CrossRef]