On Z4-linear Preparata-like and Kerdock-like codes
2003, … , IEEE Transactions on
https://doi.org/10.1109/TIT.2003.819329Abstract
We say that a binary code of length is additive if it is isomorphic to a subgroup of 2 4 , where the quaternary coordinates are transformed to binary by means of the usual Gray map and hence + 2 =. In this paper, we prove that any additive extended Preparata-like code always verifies = 0,i.e.,it is always a 4-linear code. Moreover, we compute the rank and the dimension of the kernel of such Preparata-like codes and also the rank and the kernel of the 4-dual of these codes, i.e., the 4-linear Kerdock-like codes.
References (22)
- R. D. Baker, J. H. van Lint, and R. M. Wilson, "On the Preparata and Goethals codes," IEEE Trans. Inform. Theory, vol. IT-29, pp. 342-345, May 1983.
- J. Borges and J. Rifà, "A characterization of 1-perfect additive codes," IEEE Trans. Inform. Theory, vol. 45, pp. 1688-1697, July 1999.
- J. Borges, K. T. Phelps, and J. Rifà, "The rank and kernel of extended 1-perfect -linear codes and additive non -linear codes," IEEE
- Trans. Inform. Theory, vol. 49, pp. 2028-2034, Aug. 2003.
- A. E. Brouwer, A. M. Cohen, and A. Neumaier, Distance Regular Graphs. Berlin, Germany: Springer-Verlag, 1989.
- A. R. Calderbank, P. J. Cameron, W. M. Kantor, and J. J. Seidel, " -Kerdock codes, orthogonal spreads, and extremal Euclidean line-sets," in Proc. London Math. Soc., vol. 75, 1997, pp. 436-480.
- P. Delsarte and J.-M. Goethals, "Alternating bilinear forms over GF (q)," J. Comb. Theory, vol. 19-A, pp. 26-50, 1975.
- I. I. Dumer, "Some new uniformly packed codes" (in Russian), Proc. Moscow Inst. Physics and Technology, pp. 72-78, 1976.
- J. M. Goethals and S. L. Snover, "Nearly perfect binary codes," Discr. Math., vol. 3, pp. 65-88, 1972.
- A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, and P. Solé, "The -linearity of Kerdock, Preparata, Goethals and related codes," IEEE Trans. Inform. Theory, vol. 40, pp. 301-319, Mar. 1994.
- T. Helleseth and V. A. Zinoviev, "On nonlinear codes from linear codes over and their cosets," unpublished manuscript, 2001.
- W. H. Kantor, "Codes, quadratic forms and finite geometries. Different aspects of coding theory," in Proc. Symp. Appl. Math., San Francisco, CA, 1995, pp. 153-177.
- D. S. Krotov, " -linear Hadamard and extended perfect codes," in Proc. Int. Workshop on Coding and Cryptography, Paris, France, Jan. 8-12, 2001, pp. 329-334.
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. Amsterdam, The Netherlands: North-Holland, 1977.
- F. P. Preparata, "A class of optimum nonlinear double-error correcting codes," Inform. Contr., vol. 13, pp. 378-400, 1968.
- J. Rifà and J. Pujol, "Translation invariant propelinear codes," IEEE Trans. Inform. Theory, vol. 43, pp. 590-598, Mar. 1997.
- N. V. Semakov and V. A. Zinoviev, "Balanced codes and tactical config- urations," Probl. Inform. Transm., vol. 5, pp. 22-28, 1969.
- N. V. Semakov, V. A. Zinoviev, and G. V. Zaitsev, "Uniformly packed codes," Probl. Inform. Transm., vol. 7, pp. 30-39, 1971.
- "On duality of Preparata and Kerdock codes" (in Russian), in
- Proc. 5h All-Union Conf. Coding Theory, Moscow-Gorky, U.S.S.R., 1972, pp. 55-58.
- "Interrelation of Preparata and Hamming codes and extension of Hamming codes to new double-error-correcting codes," in Proc. 2nd
- Int. Symp. Information Theory. Budapest, Hungary: Akademiai Kiado, 1973.