Academia.eduAcademia.edu

Outline

On Z4-linear Preparata-like and Kerdock-like codes

2003, … , IEEE Transactions on

https://doi.org/10.1109/TIT.2003.819329

Abstract

We say that a binary code of length is additive if it is isomorphic to a subgroup of 2 4 , where the quaternary coordinates are transformed to binary by means of the usual Gray map and hence + 2 =. In this paper, we prove that any additive extended Preparata-like code always verifies = 0,i.e.,it is always a 4-linear code. Moreover, we compute the rank and the dimension of the kernel of such Preparata-like codes and also the rank and the kernel of the 4-dual of these codes, i.e., the 4-linear Kerdock-like codes.

References (22)

  1. R. D. Baker, J. H. van Lint, and R. M. Wilson, "On the Preparata and Goethals codes," IEEE Trans. Inform. Theory, vol. IT-29, pp. 342-345, May 1983.
  2. J. Borges and J. Rifà, "A characterization of 1-perfect additive codes," IEEE Trans. Inform. Theory, vol. 45, pp. 1688-1697, July 1999.
  3. J. Borges, K. T. Phelps, and J. Rifà, "The rank and kernel of extended 1-perfect -linear codes and additive non -linear codes," IEEE
  4. Trans. Inform. Theory, vol. 49, pp. 2028-2034, Aug. 2003.
  5. A. E. Brouwer, A. M. Cohen, and A. Neumaier, Distance Regular Graphs. Berlin, Germany: Springer-Verlag, 1989.
  6. A. R. Calderbank, P. J. Cameron, W. M. Kantor, and J. J. Seidel, " -Kerdock codes, orthogonal spreads, and extremal Euclidean line-sets," in Proc. London Math. Soc., vol. 75, 1997, pp. 436-480.
  7. P. Delsarte and J.-M. Goethals, "Alternating bilinear forms over GF (q)," J. Comb. Theory, vol. 19-A, pp. 26-50, 1975.
  8. I. I. Dumer, "Some new uniformly packed codes" (in Russian), Proc. Moscow Inst. Physics and Technology, pp. 72-78, 1976.
  9. J. M. Goethals and S. L. Snover, "Nearly perfect binary codes," Discr. Math., vol. 3, pp. 65-88, 1972.
  10. A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, and P. Solé, "The -linearity of Kerdock, Preparata, Goethals and related codes," IEEE Trans. Inform. Theory, vol. 40, pp. 301-319, Mar. 1994.
  11. T. Helleseth and V. A. Zinoviev, "On nonlinear codes from linear codes over and their cosets," unpublished manuscript, 2001.
  12. W. H. Kantor, "Codes, quadratic forms and finite geometries. Different aspects of coding theory," in Proc. Symp. Appl. Math., San Francisco, CA, 1995, pp. 153-177.
  13. D. S. Krotov, " -linear Hadamard and extended perfect codes," in Proc. Int. Workshop on Coding and Cryptography, Paris, France, Jan. 8-12, 2001, pp. 329-334.
  14. F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. Amsterdam, The Netherlands: North-Holland, 1977.
  15. F. P. Preparata, "A class of optimum nonlinear double-error correcting codes," Inform. Contr., vol. 13, pp. 378-400, 1968.
  16. J. Rifà and J. Pujol, "Translation invariant propelinear codes," IEEE Trans. Inform. Theory, vol. 43, pp. 590-598, Mar. 1997.
  17. N. V. Semakov and V. A. Zinoviev, "Balanced codes and tactical config- urations," Probl. Inform. Transm., vol. 5, pp. 22-28, 1969.
  18. N. V. Semakov, V. A. Zinoviev, and G. V. Zaitsev, "Uniformly packed codes," Probl. Inform. Transm., vol. 7, pp. 30-39, 1971.
  19. "On duality of Preparata and Kerdock codes" (in Russian), in
  20. Proc. 5h All-Union Conf. Coding Theory, Moscow-Gorky, U.S.S.R., 1972, pp. 55-58.
  21. "Interrelation of Preparata and Hamming codes and extension of Hamming codes to new double-error-correcting codes," in Proc. 2nd
  22. Int. Symp. Information Theory. Budapest, Hungary: Akademiai Kiado, 1973.