Academia.eduAcademia.edu

Outline

On a Poisson structure on the space of Stokes matrices

https://doi.org/10.1155/S1073792899000240

Abstract

In this paper we study the map associating to a linear differential operator with rational coefficients its monodromy data. The operator has one regular and one irregular singularity of Poincare' rank 1. We compute the Poisson structure of the corresponding Monodromy Preserving Deformation Equations on the space of the monodromy data.

References (33)

  1. M. J. Ablowitz, A. Ramani, and H. Segur, Nonlinear evolution equations and ordinary differential equations of Painlev é type, Lett. Nuovo Cimento (2) 23 (1978), 333-338.
  2. A connection between nonlinear evolution equations and ordinary differential equations of P type. I, J. Math. Phys. 21 (1980), 715-721; II, 1006-1015.
  3. A. Yu. Alekseev and A. Z. Malkin, Symplectic structure of the moduli space of flat connec- tion on a Riemann surface, Comm. Math. Phys. 169 (1995), 99-119.
  4. M. Audin, "Lectures on gauge theory and integrable systems" in Gauge Theory and Sym- plectic Geometry (Montreal, PQ, 1995), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 488, Kluwer Acad. Publ., Dordrecht, 1997, 1-48.
  5. W. Balser, W. B. Jurkat, and D. A. Lutz, Birkhoff invariants and Stokes' multipliers for meromorphic linear differential equations, J. Math. Anal. Appl. 71 (1979), 48-94.
  6. On the reduction of connection problems for differential equations with an ir- regular singular point to ones with only regular singularities, I, SIAM J. Math. Anal. 12 (1981), 691-721. at University Heidelberg on November 8, 2016 http://imrn.oxfordjournals.org/ Downloaded from
  7. N. Bourbaki, Elements de Math ématique: Groupes et Alg èbres de Lie, Chapitres IV-VI, Masson, Paris, 1981.
  8. B. Dubrovin, "Geometry of 2D topological field theories" in Integrable Systems and Quan- tum Group (Montecatini Terme, 1993), ed. M. Francaviglia and S. Greco, Springer Lecture Notes in Math. 1620, Springer, Berlin, 1996, 120-348.
  9. "Painlev é transcendents in two-dimensional topological field theory" to appear in Painlev é Transcendents: One Century Later, Proceedings of 1996 Carg èse summer school; preprint, 1998.
  10. L. D. Faddeev and L. A. Takhtajan, Hamiltonian Methods in the Theory of Solitons, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1987.
  11. H. Flaschka and A. C. Newell, Monodromy-and spectrum-preserving deformations I, Comm. Math. Phys. 76 (1980), 65-116.
  12. "The inverse monodromy transform is a canonical transformation" in Nonlinear Problems: Present and Future (Los Alamos, NM, 1981), North Holland Math. Stud. 61, North Holland, Amsterdam, 1982, 65-89.
  13. V. V. Fock and A. A. Rosly, Poisson structure on moduli of flat connections on Riemann surfaces and r-matrix, preprint, 1992.
  14. R. Fuchs, Sur quelques équations diff érentielles lin éaires du second ordre, C. R. Acad. Sci. Paris 141 (1905), 555-558.
  15. R. Garnier, Sur les équations diff érentielles du troisi ème ordre dont l'integral g én érale est uniforme et sur une classe d' équations nouvelles d'ordre superieur dont l'integral gén érale a ses points critiques fix és, Ann. Sci. Ecole Norm. Sup. 29 (1912), 1-126.
  16. Solution du probl ème de Riemann pour les sist èmes diff érentielles dont l'integral gén érale est à points critiques fix és, Ann. Sci. Ecole Norm. Sup. 43 (1926), 177-307.
  17. J. Harnad, Dual isomonodromic deformations and moment maps to loop algebras, Comm. Math. Phys. 166 (1994), 337-365.
  18. "Quantum isomonodromic deformations and the Knizhnik-Zamolodchikov equa- tions" in Symmetries and Integrability of Difference Equations (Est érel, PQ, 1994), CRM Proc. Lecture Notes 9, Amer. Math. Soc., Providence, 1996, 155-161.
  19. N. Hitchin, "Frobenius manifolds" in Gauge Theory and Symplectic Geometry (Montreal, PQ, 1995), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 488, Kluwer Acad. Publ., Dordrecht, 1997, 69-112.
  20. E. L. Ince, Ordinary Differential Equations, Longmans, Green and Co., London, 1927.
  21. A. R. Its and V. Yu. Novokshenov, The isomonodromic deformation method in the theory of Painlev é equations, Lecture Notes in Math. 1191, Springer-Verlag, Berlin, 1986.
  22. M. Jimbo and T. Miwa, Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II. Phys. D 2 (1981), 407-448.
  23. M. Jimbo, T. Miwa, and K. Ueno, Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I. Phys. D 2 (1981), 306-352.
  24. KS] D. Korotkin and H. Samtleben, Quantization of coset space σ-models coupled to two- dimensional gravity, Comm. Math. Phys. 190 (1997), 411-457. at University Heidelberg on November 8, 2016 http://imrn.oxfordjournals.org/ Downloaded from On a Poisson Structure on the Space of Stokes Matrices 493
  25. N. Reshetikhin, The Knizhnik-Zamolodchikov system as a deformation of the isomon- odromy problem, Lett. Math. Phys. 26 (1992), 167-177.
  26. R. Sch äfke, Über das globale Verhalten der Normall ösungen von x (t) = (B + t -1 A)x(t) und zweier Arten von assoziierten Funktionen, Math. Nachr. 121 (1985), 123-145.
  27. L. Schlesinger, Über eine Klasse von Differentsialsystemen beliebliger Ordnung mit festen kritischer Punkten, J. f ür Math. 141 (1912), 96-145.
  28. Y. Sibuya, Linear Differential Equations in the Complex Domain: Problems of Analytic Continuation, Trans. Amer. Math. Monogr. 82, Amer. Math. Soc., Providence, 1990.
  29. K. Ueno, Monodromy preserving deformation of linear differential equations with irreg- ular singular points, Proc. Japan Acad. Ser. A Math. Sci. 56 (1980), 97-102.
  30. Monodromy preserving deformation and its application to soliton theory I, Proc.
  31. Japan Acad. Ser. A 56 (1980), 103-108: II, 210-215.
  32. V. E. Zakharov and L. D. Faddeev, Korteweg-de Vries equation, a completely integrable Hamiltonian system, Funct. Anal. Appl. 5 (1971), 280-287.
  33. Scuola Internazionale Superiore di Studi Avanzati, Via Beirut 4, 34014 Trieste, Italy