Academia.eduAcademia.edu

Outline

4-Valued Semantics Under the OWA: A Deductive Database Approach

2019

https://doi.org/10.1007/978-3-030-44900-1_7

Abstract

In this paper, we introduce a novel approach for dealing with databases containing inconsistent information. Considering four-valued logics in the context of OWA (Open World Assumption), a database \(\varDelta \) is a pair (E, R) where E is the extension and R the set of rules. In our formalism, the set E is a set of pairs of the form \(\langle \varphi , \mathtt{v}\rangle \) where \(\varphi \) is a fact and v is either t, or b, or f (meaning respectively true, inconsistent or false), given that unknown facts are not stored. Moreover the rules extend Datalog\(^{neg}\) rules allowing their heads to be a negative atom.

References (16)

  1. Afrati, F.N., Kolaitis, P.G.: Repair checking in inconsistent databases: algorithms and complexity. In: Fagin, R. (ed.) Proceedings of the 12th International Confer- ence on Database Theory, ICDT 2009, pp. 31-41 (2009)
  2. Arieli, O., Avron, A.: The value of the four values. Artif. Intell. 102(1), 97-141 (1998)
  3. Belnap, N.D.: A useful four-valued logic. In: Dunn, J.M., Epstein, G. (eds.) Modern Uses of Multiple-Valued Logic. EPIS, vol. 2, pp. 5-37. Springer, Dordrecht (1977). https://doi.org/10.1007/978-94-010-1161-7 2
  4. Bergman, M.: The open world assumption: elephant in the room. In: AI3:::Adaptative Information, pp. 1-11 (2009). www.mkbergman.com/852/the- open-world-assumption-elephant-in-the-room/
  5. Bidoit, N.: Negation in rule-based database languages: a survey. Theor. Comput. Sci. 78(1), 3-83 (1991)
  6. Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Springer, Heidelberg (1990). https://doi.org/10.1007/978-3-642-83952-8
  7. Fitting, M.C.: Bilattices and the semantics of logic programming. J. Log. Program. 11, 91-116 (1991)
  8. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceedings of the International Conference and Symposium on Logic Program- ming, pp. 1070-1080 (1988)
  9. Greco, G., Greco, S., Zumpano, E.: A logical framework for querying and repairing inconsistent databases. IEEE Trans. Knowl. Data Eng. 15(6), 1389-1408 (2003)
  10. Grant, J., Hunter, A.: Analysing inconsistent first-order knowledgebases. Artif. Intell. 172(8-9), 1064-1093 (2008)
  11. Greco, S., Molinaro, C., Trubitsyna, I.: Computing approximate query answers over inconsistent knowledge bases. In: Proceedings of the International Joint Conference on Artificial Intelligence, IJCAI, pp. 1838-1846 (2018)
  12. Hazen, A.P., Pelletier, F.J.: K3, L3, LP, RM3, A3, FDE: how to make many-valued logics work for you. CoRR, abs/1711.05816 (2017)
  13. Loyer, Y., Spyratos, N., Stamate, D.: Hypothesis-based semantics of logic programs in multivalued logics. ACM Trans. Comput. Log. 5(3), 508-527 (2004)
  14. Reiter, R.: On closed world data bases. In: Logic and Data Bases, pp. 55-76 (1977)
  15. Thimm, M.: On the expressivity of inconsistency measures (extended abstract). In: Proceedings of the International Joint Conference on Artificial Intelligence, IJCAI, pp. 5070-5074 (2017)
  16. Tsoukiàs, A.: A first-order, four-valued, weakly paraconsistent logic and its relation with rough sets semantics. Found. Comput. Decis. Sci. 12, 85-108 (2002)