A Modification of the Lernmatrix for Real Valued Data Processing
2012
https://doi.org/10.1007/978-3-642-33275-3_60Abstract
An associative memory is a binary relationship between inputs and outputs, which is stored in an M matrix. In this paper, we propose a modification of the Steinbuch Lernmatrix model in order to process real-valued patterns, avoiding binarization processes and reducing computational burden. The proposed model is used in experiments with noisy environments, where the performance and efficiency of the memory is proven. A comparison between the proposed and the original model shows a good response and efficiency in the classification process of the new Lernmatrix.
References (25)
- Abu, M., Jacques, J.: Information capacity of the Hopfield model. IEEE Transactions on Information Theory, IT-31(4), 461-464 (1985)
- Acevedo, M.: Memorias asociativas bidireccionales alfa -beta. Ph.D. Thesis, Centre of Computer Research, Institute Polytechnic National, Mexico (2006)
- Amari, S.: Learning patterns and pattern sequences by self-organizing nets of threshold elements. IEEE Transaction on Computers C-21(11), 1197-1206 (1972)
- Anderson, J., Bower, G.: Memoria Asociativa, México, Limusa (1977)
- Austin, J.: ADAM: a distributed associative memory for scene analysis. In: Proceedings of First International Conference on Neural Networks, pp. 285-295 (1987)
- Flores, R., Yáñez, C.: Memorias asociativas alfa beta basadas en código Johnson Möbius modificado. Ms.C. Thesis. Center of Computer Research, Institute Polytechnic National, Mexico (2006)
- Hassoun, M.: Associative Neural Memories. Oxford University Press, New York (1993)
- Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences 79, 2554-2558 (1982)
- Kohonen, T.: Correlation matrix memories. IEEE Transactions on Computers C-2I(4), 353-359 (1972)
- Kosko, B.: Bidirectional associative memories. IEEE Transactions on Systems, Man and Cybernetics 18(1), 49-60 (1998)
- Lidner, D.: Introducción a las señales y los sistemas. McGraw Hill (1997)
- Palm, G., Schwenker, F., Sommer, F.T., Strey, A.: Neural associative memories. In: Krikelis, A., Weems, C.C. (eds.) Associative Processing and Processors, pp. 307-326. IEEE Computer Society, Los Alamitos (1997)
- Ritter, G., Sussner, P., Días de León, J.: Morphological associative memories. IEEE Transactions on Neural Networks 9, 281-293 (1998)
- Román, G., López, I., Yáñez, M.: A new classifier based on Associative Memories. In: Proc. 15th International Conference on Computing CIC, pp. 55-59. IEEE Computer Society, Los Alamitos (2006)
- Sánchez, F., Días de León, J., Yáñez, C.: Lernmatrix de Steinbuch: condiciones necesarias y suficientes para recuperación perfecta de patrones. Research on Computing Science 10, 91-102 (2002)
- Sánchez, A., Díaz de León, S., Yáñez, C.: New results on the Lernmatrix properties. Research in Computing Science 10, 91-102 (2004a)
- Sánchez, A., Díaz de León, S., Yáñez, C.: Lernmatrix de Steinbuch: Avances Teóricos. Computación y Sistemas 7(3), 175-189 (2004b)
- Simpson, P.K.: Artificial Neural Systems. Pergamon Press, New York (1990)
- Steinbuch, K.: Die Lernmatrix. Kybernetik 1(1), 36-45 (1961)
- Steinbuch, K., Frank, H.: Nichtdigitale Lernmatrizen als perzeptoren. Kybernetik 1(3), 117-124 (1961)
- Vázquez, H., Sossa, H.: A bidirectional hetero-associative memory for true -color patterns. Neural Processing Letters 28, 131-153 (2008)
- Willshaw, D., Buneman, O., Longuet-Higgins, H.: Non-holographic associative memory. Nature 222, 960-962 (1969)
- Yáñez, C.: Memorias Asociativas basadas en relaciones de orden y operadores binarios. Ph.D. Thesis. Center of Computer Research, Institute Polytechnic National, Mexico (2002)
- Yáñez, C., Díaz de León, J.: 2003a. Memorias Autoasociativas Morfológicas max: condiciones suficientes para convergencia, aprendizaje y recuperación de patrones. IT-I75, Serie Azul, CIC-IPN, Mexico (2003) ISBN 970-36-0035-2
- Yáñez, C., Díaz de León, J.: Memorias Autoasociativas Morfológicas min: condiciones suficientes para convergencia, aprendizaje y recuperación de patrones. IT-I77, Serie Azul, CIC-IPN, Mexico (2003b) ISBN 970-36-0036-0