Academia.eduAcademia.edu

Outline

Quasiperiodic Sturmian words and morphisms

2006

Abstract

We characterize all quasiperiodic Sturmian words: a Sturmian word is not quasiperiodic if and only if it is a Lyndon word. Moreover, we study links between Sturmian morphisms and quasiperiodicity.

References (19)

  1. A. Apostolico and M. Crochemore. String pattern matching for a deluge survival kit. In J. Abello, P.M. Pardalos, and M.G.C. Resende, editors, Handbook of Massive Data Sets. Kluwer Academic Publishers, 2001.
  2. A. Apostolico and A. Ehrenfeucht. Efficient detection of quasiperiodicities in strings. Theo- retical Computer Science, 119:247-265, 1993.
  3. A. Apostolico, M. Farach, and C. S. Iliopoulos. Optimal superprimitivity testing for strings. Information Processing Letters, 39(1):17-20, 1991.
  4. J. Berstel. Axel Thue's work on repetitions in words. Publications du LaCIM, 11:65-80, 1992.
  5. V. Berthé, C. Holton, and L. Q. Zamboni. Initial powers of Sturmian sequences. Acta Mathe- matica, To appear.
  6. S Ferenczi. Complexity of sequences and dynamical systems. Discrete Math., 206:145-154, 1999.
  7. F. Levé and G. Richomme. Quasiperiodic infinite words: some answers. Bulletin of the European Association for Theoretical Computer Science, 84:128-138, 2004.
  8. M. Lothaire. Combinatorics on Words, volume 17 of Encyclopedia of Mathematics and its Applications. Addison-Wesley, 1983.
  9. M. Lothaire. Algebraic Combinatorics on Words, volume 90 of Encyclopedia of Mathematics and its Applications. Cambridge Univ. Press, 2002.
  10. M. Lothaire. Applied Combinatorics on Words, volume 105 of Encyclopedia of Mathematics and its Applications. Cambridge Univ. Press, 2005.
  11. S. Marcus. Bridging two hierarchies of infinite words. Journal of Universal Computer Science, 8:292-296, 2002.
  12. S. Marcus. Quasiperiodic infinite words. Bulletin of the European Association for Theoretical Computer Science, 82:170-174, 2004.
  13. T. Monteil. Ph.D thesis: Illumination dans les billards polygonaux et dynamique symbolique -in preparation.
  14. T. Monteil. Quasiperiodic words: the multiscaled case and dynamical properties -in prepara- tion.
  15. G. Richomme. Conjugacy and episturmian morphisms. Theoretical Computer Science, 302:1- 34, 2003.
  16. G. Richomme. Lyndon morphisms. Bull. Belg. Math. Soc., 10:761-785, 2003.
  17. P. Séébold. Fibonacci morphisms and Sturmian words. Theor. Comput. Sci., 88(2):365-384, 1991.
  18. R. Siromoney, L. Mathew, V.R. Dare, and K.G. Subramanian. Infinite Lyndon words. Inf. Process. Lett., 50(2):101-104, 1994.
  19. A. Thue. Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske vid. Selsk. Skr. I Mat-Nat. Kl. Christiana, 1:1-67, 1912.