Academia.eduAcademia.edu

Outline

Fast Generation of Potentials for Self-Assembly of Particles

2009, arXiv: Adaptation and Self-Organizing Systems

Abstract

We address the inverse problem of designing isotropic pairwise particle interaction potentials that lead to the formation of a desired lattice when a system of particles is cooled. The design problem is motivated by the desire to produce materials with pre-specified structure and properties. We present a heuristic computation-free geometric method, as well as a fast and robust trend optimization method that lead to the formation of high quality honeycomb lattices. The trend optimization method is particularly successful since it is well-suited to efficient optimization of the noisy and expensive objective functions encountered in the self-assembly design problem. We also present anisotropic potentials that robustly lead to the formation of the kagome lattice, a lattice that has not previously been obtained with isotropic potentials.

References (51)

  1. G. M. Whitesides and B. Grzybowski, Self-Assembly at All Scales, Science, 295(5564), 2418-2421 (2002).
  2. M. M. Murr and D. E. Morse, Fractal intermediates in the self-assembly of silicatein filaments, Pro- ceedings of the National Academy of Sciences of the United States of America, 102(33), 11657-11662 (2005).
  3. W. Zheng, P. Buhlmann, and H. Jacobs, Sequential shape-and-solder-directed self-assembly of func- tional microsystems, Proceedings of the National Academy of Sciences of the United States of America, 101(35), 12814-12817 (2004).
  4. S. A. Stauth and B. A. Parviz, Self-assembled single-crystal silicon circuits on plastic, Proceedings of the National Academy of Sciences of the United States of America, 103(38), 13922-13927 (2006).
  5. R. Gross and M. Dorigo, Evolution of Solitary and Group Transport Behaviors for Autonomous Robots Capable of Self-Assembling, Adaptive Behavior, 16(5), 285-305 (2008).
  6. K. Jakab, A. Neagu, V. Mironov, R. R. Markwald, and G. Forgacs, Engineering biological structures of prescribed shape using self-assembling multicellular systems, Proceedings of the National Academy of Sciences of the United States of America, 101(9), 2864-2869 (2004).
  7. V. Manoharan, M. Elsesser, and D. Pine, Dense packing and symmetry in small clusters of microspheres, Science, 301(5632), 483-487 (2003).
  8. P. Maksymovych, D. C. Sorescu, K. D. Jordan, and J. Yates, John T., Collective Reactivity of Molecular Chains Self-Assembled on a Surface, Science, 322(5908), 1664-1667 (2008).
  9. M. Engel and H. Trebin, Self-Assembly of Monatomic Complex Crystals and Quasicrystals with a Double-Well Interaction Potential, Physical Review Letters, 98(22), 225505 (2007).
  10. M. A. Glaser, G. M. Grason, R. D. Kamien, A. Kosmrlj, C. D. Santangelo, and P. Ziherl, Soft spheres make more mesophases, EPL (Europhysics Letters), 78(4), 46004 (5pp) (2007).
  11. V. V. Hoang and T. Odagaki, Molecular dynamics simulations of simple monatomic amorphous nanoparticles, Physical Review B (Condensed Matter and Materials Physics), 77(12), 125434 (2008).
  12. Y. H. Liu, L. Y. Chew, and M. Y. Yu, Self-assembly of complex structures in a two-dimensional system with competing interaction forces, Physical Review E (Statistical, Nonlinear, and Soft Matter Physics), 78(6), 066405 (2008).
  13. A. Quandt and M. P. Teter, Formation of quasiperiodic patterns within a simple two-dimensional model system, Phys. Rev. B, 59(13), 8586-8592 (1999).
  14. O. Sigmund and S. Torquato, Composites with extremal thermal expansion coefficients, Applied Physics Letters, 69(21), 3203-3205 (1996).
  15. K. M. Ho, C. T. Chan, and C. M. Soukoulis, Existence of a photonic gap in periodic dielectric structures, Phys. Rev. Lett., 65(25), 3152-3155 (1990).
  16. T. A. Mary, J. S. O. Evans, T. Vogt, and A. W. Sleight, Negative Thermal Expansion from 0.3 to 1050 Kelvin in ZrW 2 O 8 , Science, 272(5258), 90-92 (1996).
  17. B. Xu, F. Arias, S. Brittain, X. Zhao, B. Grzybowski, S. Torquato, and G. Whitesides, Making negative Poisson's ratio microstructures by soft lithography, Advanced Materials, 11(14), 1186-1189 (1999).
  18. S. Hyun and S. Torquato, Designing composite microstructures with targeted properties, Journal of Materials Research, 16(1), 280-285 (2001).
  19. G. Ferey and A. Cheetham, Porous materials -Prospects for giant pores, Science, 283(5405), 1125-1126 (1999).
  20. B. Chen, M. Eddaoudi, S. Hyde, M. O'Keeffe, and O. Yaghi, Interwoven metal-organic framework on a periodic minimal surface with extra-large pores, Science, 291(5506), 1021-1023 (2001).
  21. A. Greer, Condensed matter -Too hot to melt, Nature, 404(6774), 134-135 (2000).
  22. C. A. Murray and D. G. Grier, Video Microscopy of Monodisperse Colloidal Systems, Annual Review of Physical Chemistry, 47(1), 421-462 (1996).
  23. Rechtsman, M., F. Stillinger, and S. Torquato [2006], Designed interaction potentials via inverse meth- ods for self-assembly. Phys. Rev. E 73, 011406.
  24. S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, Journal of Computational Physics, 117(1), 1 -19 (1995). See also the website at http://lammps.sandia.gov.
  25. Theil, F. [2006], A proof of crystallization in two dimensions. Comm. Math. Phys 262, 209.
  26. Rechtsman, M., F. Stillinger, and S. Torquato [2005], Optimized interactions for targeted self-assembly: Application to a honeycomb lattice. Phys. Rev. Lett. 95, 228301.
  27. Grubits, K. A., and J. E. Marsden (2008), Lattice Quality Assessment Tools and their Applications. in preparation.
  28. Booker, A. J. (1996), Case studies in design and analysis of computer experiments. Proceedings of the Section on Physical and Engineering Sciences, American Statistical Association.
  29. Myers, R., and D. C. Montgomery (1995), Response Surface Methodology: Process and product opti- mization using designed experiments. John Wiley & Sons, New York.
  30. Galassi, Davies, T. G. J. A. B. R. (2009). GNU Scientific Library Reference Manual -Third Edition (Third). Network theory Ltd..
  31. Booker, A. J., J. E. Dennis Jr., P. D. Frank, D. B. Serafini, V. Torzon, and M. W. Trosset (1999), A rigorous framework for optimization of expensive functions by surrogates. Structural Optimization 17, 1.
  32. Torczon, V. [1997], On the convergence of pattern search algorithms. SIAM J. Optimization 7, (1), 1.
  33. Audet, C., and J. E. Dennis Jr. (2003), Analysis of generalized pattern searches. SIAM Journal on Optimization 13, 889.
  34. C. Audet and J. J. E. Dennis, Mesh Adaptive Direct Search Algorithms for Constrained Optimization, SIAM Journal on Optimization, 17(1), 188-217 (2006).
  35. C. Audet, V. Bchard, and J. Chaouki, Spent potliner treatment process optimization using a MADS algorithm, Optimization and Engineering, 9(2), 143-160 (2008).
  36. A. L. Marsden, J. A. Feinstein, and C. A. Taylor, A computational framework for derivative-free optimization of cardiovascular geometries, Computer Methods in Applied Mechanics and Engineering, 197(21-24), 1890 -1905 (2008).
  37. A. L. Marsden, M. Wang, J. E. Dennis, and P. Moin, Trailing-edge noise reduction using derivative-free optimization and large-eddy simulation, Journal of Fluid Mechanics, 572(-1), 13-36 (2007).
  38. E. S. Siah, M. Sasena, J. L. Volakis, P. Y. Papalambros, and R. W. Wiese, Fast parameter optimization of large-scale electromagnetic objects using DIRECT with Kriging metamodeling, Microwave Theory and Techniques, IEEE Transactions on, 52(1), 276-285 (2004).
  39. W. Raza and K. Kim, Evaluation of Surrogate Models in Optimization of Wire-Wrapped Fuel Assembly, Journal of Nuclear Science and Technology, 44(6), 819-822 (2007).
  40. Cressie, N. (1990), The origins of kriging. Mathematical Geology 22, 239.
  41. Simpson, T. W., J. J. Korte, T. M. Mauery, and F. Mistree [1998], Comparison of response surface and kriging models for multidisciplinary design optimization. AIAA Paper, 98-4755.
  42. Giunta, A. A., and L. T. Watson (1998), A comparison of approximation modeling techniques: poly- nomial versus interpolating models. AIAA Paper, 98-4758.
  43. Hastie, T., R. Tibshirani, and J. H. Friedman (2001), The Elements of Statistical Learning, Springer.
  44. Tikhonov, A. N. and Arsenin, V. Y. (1977). Solutions of Ill-posed Problems. New York: Halsted Press.
  45. Dyn, N., D. Levin, and S. Rippa (1986), Numerical procedures for surface fitting of scattered data by radial basis functions. SIAM J. Sci. Statist. Comp. 7, 639.
  46. Fasshauer, G. E. (2007). Meshfree Approximation Methods with MATLAB. Singapore: World Scientific Publishing .
  47. Gutmann, H.-M. (2001), A radial basis function method for global optimization. Journal of Global Optimization 19(3), 201.
  48. M. D. McKay, R. J. Beckman, and W. J. Conover, A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code, Technometrics, 21(2), 239-245 (1979).
  49. M. Mekata, Kagome: The Story of the Basketweave Lattice, Physics Today, 56(2), 12-13 (2003).
  50. Jagla, E. A. (1999), Minimum energy configurations of repelling particles in two dimensions. J. Chem.
  51. M. C. Rechtsman, F. H. Stillinger, and S. Torquato, Synthetic diamond and wurtzite structures self- assemble with isotropic pair interactions, Physical Review E (Statistical, Nonlinear, and Soft Matter Physics), 75(3), 031403 (2007).