Fast Generation of Potentials for Self-Assembly of Particles
2009, arXiv: Adaptation and Self-Organizing Systems
Abstract
We address the inverse problem of designing isotropic pairwise particle interaction potentials that lead to the formation of a desired lattice when a system of particles is cooled. The design problem is motivated by the desire to produce materials with pre-specified structure and properties. We present a heuristic computation-free geometric method, as well as a fast and robust trend optimization method that lead to the formation of high quality honeycomb lattices. The trend optimization method is particularly successful since it is well-suited to efficient optimization of the noisy and expensive objective functions encountered in the self-assembly design problem. We also present anisotropic potentials that robustly lead to the formation of the kagome lattice, a lattice that has not previously been obtained with isotropic potentials.
References (51)
- G. M. Whitesides and B. Grzybowski, Self-Assembly at All Scales, Science, 295(5564), 2418-2421 (2002).
- M. M. Murr and D. E. Morse, Fractal intermediates in the self-assembly of silicatein filaments, Pro- ceedings of the National Academy of Sciences of the United States of America, 102(33), 11657-11662 (2005).
- W. Zheng, P. Buhlmann, and H. Jacobs, Sequential shape-and-solder-directed self-assembly of func- tional microsystems, Proceedings of the National Academy of Sciences of the United States of America, 101(35), 12814-12817 (2004).
- S. A. Stauth and B. A. Parviz, Self-assembled single-crystal silicon circuits on plastic, Proceedings of the National Academy of Sciences of the United States of America, 103(38), 13922-13927 (2006).
- R. Gross and M. Dorigo, Evolution of Solitary and Group Transport Behaviors for Autonomous Robots Capable of Self-Assembling, Adaptive Behavior, 16(5), 285-305 (2008).
- K. Jakab, A. Neagu, V. Mironov, R. R. Markwald, and G. Forgacs, Engineering biological structures of prescribed shape using self-assembling multicellular systems, Proceedings of the National Academy of Sciences of the United States of America, 101(9), 2864-2869 (2004).
- V. Manoharan, M. Elsesser, and D. Pine, Dense packing and symmetry in small clusters of microspheres, Science, 301(5632), 483-487 (2003).
- P. Maksymovych, D. C. Sorescu, K. D. Jordan, and J. Yates, John T., Collective Reactivity of Molecular Chains Self-Assembled on a Surface, Science, 322(5908), 1664-1667 (2008).
- M. Engel and H. Trebin, Self-Assembly of Monatomic Complex Crystals and Quasicrystals with a Double-Well Interaction Potential, Physical Review Letters, 98(22), 225505 (2007).
- M. A. Glaser, G. M. Grason, R. D. Kamien, A. Kosmrlj, C. D. Santangelo, and P. Ziherl, Soft spheres make more mesophases, EPL (Europhysics Letters), 78(4), 46004 (5pp) (2007).
- V. V. Hoang and T. Odagaki, Molecular dynamics simulations of simple monatomic amorphous nanoparticles, Physical Review B (Condensed Matter and Materials Physics), 77(12), 125434 (2008).
- Y. H. Liu, L. Y. Chew, and M. Y. Yu, Self-assembly of complex structures in a two-dimensional system with competing interaction forces, Physical Review E (Statistical, Nonlinear, and Soft Matter Physics), 78(6), 066405 (2008).
- A. Quandt and M. P. Teter, Formation of quasiperiodic patterns within a simple two-dimensional model system, Phys. Rev. B, 59(13), 8586-8592 (1999).
- O. Sigmund and S. Torquato, Composites with extremal thermal expansion coefficients, Applied Physics Letters, 69(21), 3203-3205 (1996).
- K. M. Ho, C. T. Chan, and C. M. Soukoulis, Existence of a photonic gap in periodic dielectric structures, Phys. Rev. Lett., 65(25), 3152-3155 (1990).
- T. A. Mary, J. S. O. Evans, T. Vogt, and A. W. Sleight, Negative Thermal Expansion from 0.3 to 1050 Kelvin in ZrW 2 O 8 , Science, 272(5258), 90-92 (1996).
- B. Xu, F. Arias, S. Brittain, X. Zhao, B. Grzybowski, S. Torquato, and G. Whitesides, Making negative Poisson's ratio microstructures by soft lithography, Advanced Materials, 11(14), 1186-1189 (1999).
- S. Hyun and S. Torquato, Designing composite microstructures with targeted properties, Journal of Materials Research, 16(1), 280-285 (2001).
- G. Ferey and A. Cheetham, Porous materials -Prospects for giant pores, Science, 283(5405), 1125-1126 (1999).
- B. Chen, M. Eddaoudi, S. Hyde, M. O'Keeffe, and O. Yaghi, Interwoven metal-organic framework on a periodic minimal surface with extra-large pores, Science, 291(5506), 1021-1023 (2001).
- A. Greer, Condensed matter -Too hot to melt, Nature, 404(6774), 134-135 (2000).
- C. A. Murray and D. G. Grier, Video Microscopy of Monodisperse Colloidal Systems, Annual Review of Physical Chemistry, 47(1), 421-462 (1996).
- Rechtsman, M., F. Stillinger, and S. Torquato [2006], Designed interaction potentials via inverse meth- ods for self-assembly. Phys. Rev. E 73, 011406.
- S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, Journal of Computational Physics, 117(1), 1 -19 (1995). See also the website at http://lammps.sandia.gov.
- Theil, F. [2006], A proof of crystallization in two dimensions. Comm. Math. Phys 262, 209.
- Rechtsman, M., F. Stillinger, and S. Torquato [2005], Optimized interactions for targeted self-assembly: Application to a honeycomb lattice. Phys. Rev. Lett. 95, 228301.
- Grubits, K. A., and J. E. Marsden (2008), Lattice Quality Assessment Tools and their Applications. in preparation.
- Booker, A. J. (1996), Case studies in design and analysis of computer experiments. Proceedings of the Section on Physical and Engineering Sciences, American Statistical Association.
- Myers, R., and D. C. Montgomery (1995), Response Surface Methodology: Process and product opti- mization using designed experiments. John Wiley & Sons, New York.
- Galassi, Davies, T. G. J. A. B. R. (2009). GNU Scientific Library Reference Manual -Third Edition (Third). Network theory Ltd..
- Booker, A. J., J. E. Dennis Jr., P. D. Frank, D. B. Serafini, V. Torzon, and M. W. Trosset (1999), A rigorous framework for optimization of expensive functions by surrogates. Structural Optimization 17, 1.
- Torczon, V. [1997], On the convergence of pattern search algorithms. SIAM J. Optimization 7, (1), 1.
- Audet, C., and J. E. Dennis Jr. (2003), Analysis of generalized pattern searches. SIAM Journal on Optimization 13, 889.
- C. Audet and J. J. E. Dennis, Mesh Adaptive Direct Search Algorithms for Constrained Optimization, SIAM Journal on Optimization, 17(1), 188-217 (2006).
- C. Audet, V. Bchard, and J. Chaouki, Spent potliner treatment process optimization using a MADS algorithm, Optimization and Engineering, 9(2), 143-160 (2008).
- A. L. Marsden, J. A. Feinstein, and C. A. Taylor, A computational framework for derivative-free optimization of cardiovascular geometries, Computer Methods in Applied Mechanics and Engineering, 197(21-24), 1890 -1905 (2008).
- A. L. Marsden, M. Wang, J. E. Dennis, and P. Moin, Trailing-edge noise reduction using derivative-free optimization and large-eddy simulation, Journal of Fluid Mechanics, 572(-1), 13-36 (2007).
- E. S. Siah, M. Sasena, J. L. Volakis, P. Y. Papalambros, and R. W. Wiese, Fast parameter optimization of large-scale electromagnetic objects using DIRECT with Kriging metamodeling, Microwave Theory and Techniques, IEEE Transactions on, 52(1), 276-285 (2004).
- W. Raza and K. Kim, Evaluation of Surrogate Models in Optimization of Wire-Wrapped Fuel Assembly, Journal of Nuclear Science and Technology, 44(6), 819-822 (2007).
- Cressie, N. (1990), The origins of kriging. Mathematical Geology 22, 239.
- Simpson, T. W., J. J. Korte, T. M. Mauery, and F. Mistree [1998], Comparison of response surface and kriging models for multidisciplinary design optimization. AIAA Paper, 98-4755.
- Giunta, A. A., and L. T. Watson (1998), A comparison of approximation modeling techniques: poly- nomial versus interpolating models. AIAA Paper, 98-4758.
- Hastie, T., R. Tibshirani, and J. H. Friedman (2001), The Elements of Statistical Learning, Springer.
- Tikhonov, A. N. and Arsenin, V. Y. (1977). Solutions of Ill-posed Problems. New York: Halsted Press.
- Dyn, N., D. Levin, and S. Rippa (1986), Numerical procedures for surface fitting of scattered data by radial basis functions. SIAM J. Sci. Statist. Comp. 7, 639.
- Fasshauer, G. E. (2007). Meshfree Approximation Methods with MATLAB. Singapore: World Scientific Publishing .
- Gutmann, H.-M. (2001), A radial basis function method for global optimization. Journal of Global Optimization 19(3), 201.
- M. D. McKay, R. J. Beckman, and W. J. Conover, A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code, Technometrics, 21(2), 239-245 (1979).
- M. Mekata, Kagome: The Story of the Basketweave Lattice, Physics Today, 56(2), 12-13 (2003).
- Jagla, E. A. (1999), Minimum energy configurations of repelling particles in two dimensions. J. Chem.
- M. C. Rechtsman, F. H. Stillinger, and S. Torquato, Synthetic diamond and wurtzite structures self- assemble with isotropic pair interactions, Physical Review E (Statistical, Nonlinear, and Soft Matter Physics), 75(3), 031403 (2007).