Academia.eduAcademia.edu

Outline

Mesh Generation and Mesh Adaptivity: Theory and Techniques

2004, Encyclopedia of Computational Mechanics

https://doi.org/10.1002/9780470091357.ECM012.PUB2

Abstract

In this chapter we are concerned with mesh generation methods and mesh adaptivity issues. Nowadays, many techniques are available to complete meshes of arbitrary domains for computational purposes. Planar, surface and volume meshing have been automated to a large extent. Over the last few years, meshing activities have focused on adaptive schemes where the features of a solution field must be accurately captured. To this end, meshing techniques must be revisited in order to be capable of completing high quality meshes conforming to these features. Error estimates are therefore used to analyze the solution field at a given stage and, based on the results and the information they yield, adapted meshes are created before computing the next stage of the solution field. A number of novel meshing issues must be addressed including how to construct a mesh adapted to what the error estimate prescribes, how to validate and construct high-order meshes, how to handle large size meshes, how to consider moving boundary problems, etc.

References (158)

  1. Definition of the new discrete geometry G(Γ) after deformation;
  2. Geometric error estimation (deviation of the current discretization T (Γ) from the new geometry G(Γ)) resulting in a size map M G (Γ) used to govern the rediscretization of Γ;
  3. Physical error estimation (deviation of the current solution S(Ω) from an ideal solution assumed to be smooth enough) which results in a size map M Φ (Ω) serving to govern the remeshing of Ω;
  4. Definition of the full size map M(Ω) by merging M G (Γ) and M Φ (Ω);
  5. Adaptive rediscretization of Γ w.r.t. M(Ω);
  6. Adaptive remeshing of Ω w.r.t. M(Ω).
  7. F. Alauzet, P.J. Frey, P.L. George and B. Mohammadi, 3D transient fixed point mesh adaptation for time-dependent problems: Application to CFD simulations, J. Comput. Phys., 222, 592-623, 2007.
  8. F. Alauzet, Size gradation control of anisotropic meshes, FEAD, 46, 181-202, 2010.
  9. F. Alauzet and M. Mehrenberger, P1-conservative solution interpolation on unstructured triangular meshes, Int. j. numer. meth. eng., 84(13), 1552-1588, 2010.
  10. F. Alauzet and G. Olivier , Extension of Metric-Based Anisotropic Mesh Adaptation to Time- Dependent Problems Involving Moving Geometries, Aerospace Sciences Meeting 49, AIAAP 2011- 0896, Orlando, FL, USA, 2011.
  11. F. Alauzet, A changing-topology moving mesh technique for large displacement, Eng. with Comp., 30(2), 175-200, 2014.
  12. S. Aliabadi and T. Tezduyar, Parallel fluid dynamics computations in aerospace applications, Int. j. numer. methods fluids., 21, 783-805, 1995.
  13. S.E. Allwright, Techniques in Multiblock domain decomposition and surface grid generation, in Grid generation in Computational Fluid Mechanics, S. Sengupta , J.F. Thompson, P.R. Eiseman and J. Hauser, eds. Pineridge Press, 559-568, 1988.
  14. M.V. Anglada, N.P. Garcia and P.B. Crosa, Directional adaptive surface triangulation, Computer Aided Geometric Design, 16, 107-126, 1999.
  15. T. Apel, Anisotropic Finite Element : Local Estimates and Applications, Wiley Teubner, 1999.
  16. D.L. Arnold and G. Awanou, The Serendipity Family of Finite Elements, Found Comput Math, 11, 337-344, 2011.
  17. R. Aubry and R. Löhner, Generation of viscous grids at ridges and corners, Int. j. numer. meth. eng., 77, 1247-1289, 2009.
  18. E.F. D'Azevedo and B. Simpson, On optimal triangular meshes for minimizing the gradient error, Numerische Mathematik, 59(4), 321-348, 1991.
  19. I. Babuska and A. Aziz, On the angle condition in the finite element method, SIAM J. Numer. Analysis, 13, 214-227, 1976.
  20. I. Babuska and B.Q. Guo, The h-p version of the finite element method for domain with curved boundaries, SIAM J. Numer. Anal. 25(4), 837-861, 1988.
  21. I. Babuska and B.Q. Guo, Approximation properties of the h-p version of the finite element method, Comp. Meth. Appl. Mech. Engrg. 133, 319-346, 1996.
  22. P.L. Baehmann, S.L. Wittchen, M.S. Shephard, K.R. Grice and M.A. Yerry, Robust, Geometrically Based, Automatic Two-Dimensional Mesh Generation, Int. j. numer. meth. eng., 24, 1043-1078, 1987.
  23. T.J. Baker Mesh movement metamorphosis, Eng. with Comp., 18 (3), 188-198, 2002.
  24. T.J. Baker and P. Cavallo, Dynamic adaptation for deforming tetrahedral meshes, AIAA Journal, 99(3253), 19-29, 1999.
  25. R.E. Bank and R.K. Smith, A posteriori error estimate based on hierarchical bases, SIAM J. Numer. Anal., 30(4), 921-935, 1993.
  26. R.E. Bank, Mesh smoothing using a posteriori estimates, Siam J. numer. anal., 34(3), 979-997, 1997.
  27. J. Batina , Unsteady Euler Airfoil Solutions Using Unstructured Dynamic Meshes, AIAA Journal, 28(8), 1381-1388, 1990.
  28. F. Basi and S. Rebay, High-Order Accurate Discontinuous Finite Element Solution of the 2D Euler Equations J. Comput. Phys., 138, 251-285, 1997.
  29. R. Becker and R. Rannacher, A feed-back approach to error control in finite element methods: basic analysis and examples, East-West J. Numer. Math., 4, 237-264, 1996.
  30. J.A. Benek, P.G. Buning and J.L. Steger, A 3D Chimera Grid Embedding Technique, AIAA Computational Fluid Dynamics Conference 7, AIAAP 1985-1523, Cincinnati, OH, USA, 1985.
  31. M. Berzins, Mesh quality : a function of geometry, error estimates or both ?, Eng. with Comp., 15, 236-247, 1999.
  32. P. Bézier, Courbes et surfaces, Mathématiques et CAO, 4, Hermès, Paris, 1986.
  33. J.D. Boissonnat and M. Yvinec, Algorithmic Geometry, Cambridge University Press, 1997.
  34. H. Borouchaki and P.L. George, Quality mesh generation, C.R. Acad. Sci. Paris, Concise review paper, t. 328, Serie II-b, 505-518, 2000.
  35. H. Borouchaki, D. Chapelle, P.L. George, P. Laug et P. Frey, Estimateur d'erreur géométrique et adaptation, in Maillage et adaptation, Traité Mécanique et Ingénierie des Matériaux, Hermès-Lavoisier, in french. Paris, 2001.
  36. H. Borouchaki, P.L. George, F. Hecht, P. Laug and E. Saltel, Delaunay mesh generation governed by metric specifications. Part I. Algorithms, Finite Elements in Analysis and Design, 25, 61-83, 1997.
  37. H. Borouchaki, F. Hecht and P.J. Frey, Mesh Gradation Control, Int. j. numer. meth. eng., 43, 1143-1165, 1997.
  38. H. Borouchaki, P. Laug and P.L. George, Parametric surface meshing using a combined advancing-front -generalized-Delaunay approach, Int. j. numer. meth. eng., 49, 233-259, 2000.
  39. H. Borouchaki and P.J. Frey Simplification of surface mesh using Hausdorff envelope, Comp. Meth. Appl. Mech. Engrg., 194(48-49), 4864-4884, 2005.
  40. C.L. Bottasso and D. Detomi , A procedure for tetrahedral boundary layer mesh generation, Eng. with Comp., 18, 66-79, 2002.
  41. C.L. Bottasso, Anisotropic mesh adaption by metric-driven optimization, Int. j. numer. meth. eng., 60, 597-639, 2004.
  42. E. Brière de l'Isle and P.L. George , Optimization of tetrahedral meshes, IMA Volumes in Mathematics and its Applications, I. Babuska, W.D. Henshaw, J.E. Oliger, J.E. Flaherty, J.E. Hopcroft and T. Tezduyar (Eds.), 75, 97-128, 1995.
  43. G.F. Carey, Computational grids : generation, adaptation and solution strategies, Taylor and Francis, 1997.
  44. L. Chen, P. Sun and J. Xu, Optimal anisotropic meshes for minimizing interpolation errors in L p -norm, MCOMP, 76(257), 179-204, 2007.
  45. P.G. Ciarlet, Basic Error Estimates for Elliptic Problems, in Handbook of Numerical Analysis, vol II, P.G. Ciarlet and J.L. Lions Eds, North Holland, 17-352, 1991.
  46. G. Compère, E. Marchandise and J.-F. Remacle, Transient adaptivity applied to two-phase incompressible flows, J. Comput. Phys., 227, 1923-1942, 2007.
  47. W.A. Cook, Body oriented coordinates for generating 3-dimensional meshes, Int. j. numer. meth. eng., 8, 27-43, 1974.
  48. J.A. Cottrell, T.J.R. Hughes and Y. Bazilevs, Isogeometric Analysis. Toward Integration of CAD and FEA, Wiley, Chichester, UK, 2009.
  49. T. Coupez, Grandes transformations et remaillage automatique, Thèse ENSMP, CEMEF, 1991.
  50. S. Dey, R.M. O'Bara and M.S. Shephard, Curvilinear mesh generation in 3D, Proc. 8 th Inter. Meshing Roundtable, South Lake Tahoe, CA, 407-417, 1999.
  51. T.K. Dey, Curve and Surface Reconstruction, Cambridge University Press, 2007.
  52. C. Dobrzynski, Adaptation de maillage anisotrope 3d et application à l'aéro-thermique des bâtiments, thèse de Mathématiques, Thèse Université Pierre et Marie Curie, 2005.
  53. G. Farin, Curves and surfaces for CAGD. A practical guide. 5 th edition, Academic Press, 2002.
  54. A. Fischer and P.Z. Bar-Yoseph, Adaptive mesh generation based on multi-resolution quad tree representation, Int. j. numer. methods eng., 48, 1571-1582, 2000.
  55. M. Fortin, Estimation a posteriori et adaptation de maillages, Revue européenne des éléments finis, 9(4), 2000.
  56. L. Freitag and P. Plassmann, Local Optimization-based Simplicial Mesh Untangling and Improvement, Int. j. numer. methods eng., 49, 109-125, 2000.
  57. P.J. Frey and H. Borouchaki, Geometric surface mesh optimization, Computing and Visualization in Science, 1, 113-121, 1998.
  58. P.J. Frey and P.L. George, Mesh generation, Hermès, France, also in french, 2000 (1 st edition), Iste-Wiley, 2008 (2 nd edition).
  59. P.J. Frey and F. Alauzet, Anisotropic mesh adaptation for CFD computations, Comp. Meth. Appl. Mech. Engrg., 194(48-49), 5068-5082, 2005.
  60. J. Galtier, Structures de données irrégulières et architectures haute performance. Une étude du calcul numérique intensif par le partitionnement de graphes, Thèse Université Versailles, 1997.
  61. A. Gargallo-Peiro, X. Roca, J. Peraire and J. Sarrate, Optimization of a regularized distorsion measure to generate curved high-order unstructured tetrahedral meshes, Int. j. numer. methods eng., DOI: 10.1002/nme.4888, 2015.
  62. R.V. Garimella and M.S. Shephard , Boundary layer mesh generation fro viscous flow simulations, Int. j. numer. methods fluids, 49, 193-218, 2000.
  63. R. Garimella, M. Kucharik and M. Shashkov, An efficient linearity and bound preserving conservative interpolation (remapping) on polyhedral meshes, Comput. and Fluids, 36(2), 224- 237, 2007.
  64. J.A. George, Computer implementation of the finite element method, PhD thesis, Dept. of Computer Science, Stanford University, 1971.
  65. P.L. George, Automatic mesh generation. Applications to finite element methods, Wiley, 1991.
  66. P.L. George, F. Hecht and E. Saltel, Automatic mesh generator with specified boundary, Comp. Meth. Appl. Mech. Engrg., 92, 269-288, 1991
  67. P.L. George and F. Hermeline, Delaunay's mesh of a convex polyhedron in dimension d. Application to arbitrary polyhedra, Int. j. numer. methods eng., 33, 975-995, 1992.
  68. P.L. George, Automatic Mesh Generation and Finite Element Computation, in Handbook of Numerical Analysis, vol IV, Finite Element methods (Part 2), Numerical Methods for Solids (Part 2), P.G. Ciarlet and J.L. Lions Eds, North Holland, 69-190, 1996.
  69. P.L. George (Eds.), Maillage et adaptation, Traité Mécanique et Ingénierie des Matériaux (MIM), Hermès-Lavoisier, in french. Paris, 2001.
  70. P.L. George and H. Borouchaki, Delaunay Triangulation and Meshing, Application to Finite Element, Hermès, France, also in french. 1998.
  71. P.L. George and H. Borouchaki, "Ultimate" robustness in meshing an arbitrary polyhedron, Int. j. numer. methods eng., 58(7), 1061-1089, 2002.
  72. P.L. George and H. Borouchaki, Simplexe de Lagrange de degré et de dimension arbitraire, C. R. Acad. Sci. Paris, Ser. I, 349, 905-910, 2011.
  73. P.L. George and H. Borouchaki, Construction of tetrahedral meshes of degree two, Int. j. numer. methods eng., 90(9), 1156-1182, 2012.
  74. P.L. George and H. Borouchaki, Validity of Lagrange (Bézier) and rational Bézier quads of degree 2, Int. j. numer. methods eng., 99, 611-632, 2014.
  75. P.L. George, H. Borouchaki and N. Barral, Construction et validation des éléments réduits associés à un carreau simplicial de degré arbitraire, Inria Internal Report, 8571, 2014.
  76. P.L. George, H. Borouchaki and N. Barral, Construction et validation des éléments Serendip associés à un carreau de degré arbitraire, Inria Internal Report, 8572, 2014.
  77. M.B. Giles and E. Suli, Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality, Acta Numerica, 145-236, Cambridge University Press, 2002.
  78. D.M. Greaves and A.G.L. Borthwick, Hierarchical tree-based finite element mesh generation, Int. j. numer. methods eng., 45, 447-471, 1999.
  79. C. Gruau and T. Coupez, 3D tetrahedral, unstructured and anisotropic mesh generation with adaptation to natural and multidomain metric, Computer Methods in Appl. Mechanics and Engineering, 194, 4951-4976, 2005.
  80. O. Hassan, K. Morgan, E.J. Probert and J. Peraire, Unstructured tetrahedral mesh generation for three-dimensional viscous flows, Int. j. numer. meth. eng., 39, 549-567, 1996.
  81. O. Hassan, K.A. Sørensen, K. Morgan and N. P. Weatherill , A method for time accurate turbulent compressible fluid flow simulation with moving boundary components employing local remeshing, Int. j. numer. methods fluids, 53(8), 1243-1266, 2007.
  82. F. Hermeline, Une méthode automatique de maillage en dimension n, Thèse Université Paris VI, 1980.
  83. D. Hilbert, Über die Stetige Abbildung einer Linie auf ein Flächenstück, Mathematische Annalen, 38, 459-460, 1891.
  84. W. Huang, L. Kamenski and X. Li, A new anisotropic mesh adaptation method based upon hierarchical a posteriori error estimates, J. Comput. Phys., 229(6), 2179-2198, 2010.
  85. T.J.R. Hughes, The Finite Element Method: linear static and dynamic finite element analysis, Prentice-Hall Inc, NJ, 1998.
  86. ISO (International Organization for Standardization), International Standard ISO 10303, First Edition, 1994.
  87. Y. Ito and K. Nakahashi, Unstructured mesh generation for viscous flow computations, Proc. 11 th International Meshing Roundtable, Ithaca, NY, USA, 367-377, 2002.
  88. Y. Ito and K. Nakahashi, An approach to generate high quality unstructured hybrid meshes, Aerospace Sciences Meeting44, AIAAP 2006-0530, Reno, NV, USA, 2006.
  89. B. Joe, Construction of three-dimensionnal Delaunay triangulations using local transformations, Comput. Aided Geom. Design, 8, 123-142, 1991.
  90. A. Johnen, J.F. Remacle and C. Geuzaine, Geometrical Validity of Curvilinear Finite Elements, Proc. 20 th International Meshing Roundtable, Paris, 255-271, 2011.
  91. A. Johnen, J.F. Remacle and C. Geuzaine, Geometrical Validity of high-order triangular Finite Elements, Eng. with Comp., (30): 375-382, 2014.
  92. Y. Kallinderis, A. Khawaja and H. McMorris, Hybrid prismatic/tetrahedral grid generation for complex geometries, AIAA paper 95-0211, 1995.
  93. P. Knupp and S. Steinberg, The fundamentals of grid generation, CRC press, 1993.
  94. P. Knupp, Matrix Norms & The Condition Number: A General Framework to Improve Mesh Quality Via Node-Movement, Comput. Aided Geom. Design, 33, 2001.
  95. P. Laug, F. Guibault and H. Borouchaki, Automatic Mesh Generation of Multiface Models on Multicore Processors, Proc. 4 th Int. Conf. on Parallel, Distributed, Grid and Cloud Comp. for Eng., Paper 38, 2015.
  96. S. P. Lloyd, Least squares quantization in PCM, IEEE Transactions on Information Theory, 28(2), 129-137, 1982.
  97. S.H. Lo, A new mesh generation scheme for arbitrary planar domains, Int. j. numer. methods eng., 21, 1403-1426, 1985.
  98. S.H. Lo, Automatic mesh generation and adaptation by using contours, Int. j. numer. meth. eng., 31, 689-707, 1991.
  99. R. Löhner and P. Parikh, Three-Dimensional Grid Generation by the Advancing Front Method, Int. j. numer. methods fluids, 8, 1135-1149, 1988.
  100. R. Löhner, Matching semi-structured and unstructured grids for Navier-Stokes calculations, Aerospace Sciences Meeting 31, AIAAP 1993-3348, Reno, NV, USA, 1993.
  101. R. Löhner, Extensions and improvements of the advancing-front grid generation technique, Comm. numer. methods eng., 12, 683-702, 1996.
  102. R. Löhner and C. Yang , Improved ALE Mesh Velocities for Moving Bodies, Comm. numer. methods eng., 12(10), 599-608, 1996.
  103. R. Löhner, Automatic Unstructured Grid Generators, Finite Elements in Analysis and Design, 25(3- 4), 111-134, 1997.
  104. R. Löhner, Generation of unstructured grids suitable for RANS calculations, Aerospace Sciences Meeting 37, AIAAP 1999-0662, Reno, NV, USA, 1999.
  105. R. Löhner, A parallel Advancing Front Grid Generation Scheme, Int. J. Numer. Meth. Eng., 51, 663-678, 2001.
  106. R. Löhner, Applied CFD techniques, Wiley, 2008.
  107. A. Loseille, A. Dervieux, P.J. Frey and F. Alauzet, Achievement of global second-order mesh convergence for discontinuous flows with adapted unstructured meshes, AIAAFLUID 37, AIAAP 2007-4186, Miami, FL, USA, 2007.
  108. A. Loseille and F. Alauzet, Optimal 3D highly anisotropic mesh adaptation based on the continuous mesh framework, Proc. 18 th International Meshing Roundtable, Salt Lake City, UT, USA, Springer, 575-594, 2009.
  109. A. Loseille, A. Dervieux and F. Alauzet , Fully anisotropic goal-oriented mesh adaptation for 3D steady Euler equations, J. Comput. Phys., 229, 2866-2897, 2010.
  110. A. Loseille and R. Löhner, Boundary layer mesh generation and adaptivity, Aerospace Sciences Meeting 49, AIAAP 2011-894, Orlando, FL, USA, 2011.
  111. A. Loseille and F. Alauzet, Continuous mesh framework. Part I: well-posed continuous interpolation error, SIAM J. Numer. Anal., 49(1), 38-60, 2011.
  112. E. Luke, E. Collins and E. Blades, A fast mesh deformation method using explicit interpolation, J. Comput. Phys., 231, 586-601, 2012.
  113. D.L. Marcum , Generation of unstructured grids for viscous flow applications, Aerospace Sciences Meeting 33, AIAAP 1995-0212, Reno, NV, USA, 1995.
  114. D.L. Marcum and N.P. Weatherill, Unstructured grid generation using iterative point insertion and local reconnection, AIAA Journal., 33(9), 1619-1625, 1995.
  115. D.L. Marcum , Adaptive unstructured grid generation for viscous flow applications, AIAA Journal, 34(8), 2440-2443, 1996.
  116. D.L. Marcum and F. Alauzet, A comparison of open and closed advancing-layer methods for unstructured mesh generation, Proc. 22 th Int. Meshing Roundtable, 241-261, 2013.
  117. L. Maréchal, A new approach to octree-based hexahedral meshing, Proc. 10 th Int. Meshing Roundtable, 209-221, 2001.
  118. D.J. Mavriplis, Adaptive Mesh Generation for Viscous Flows Using Delaunay Triangulation, J. Comput. Phys., 90, 271-291, 1990.
  119. D.J. Mavriplis, An advancing front Delaunay triangulation algorithm designed for robustness, ICASE report 92-49, 1992.
  120. J.T. Oden, Optimal h-p finite element methods, Comp. Meth. Appl. Mech. Engrg. 112, 303-331, 1994.
  121. C.C Pain, A.P. Humpleby, C.R.E. de Oliveira and A.J.H. Goddard, Tetrahedral mesh optimisation and adaptivity for steady-state and transient finite element calculations, Comp. Meth. Appl. Mech. Engrg., 190, 3771-3796, 2001.
  122. P. Pebay, Construction d'une contrainte Delaunay admissible en dimension 2, INRIA Internal Report 3492, 1998.
  123. J. Peraire, M. Vahdati, K. Morgan and O.C. Zienkiewicz, Adaptive remeshing for compressible flow computations, Jour. of Comput. Phys., 72, 449-466, 1987.
  124. J. Peraire, J. Peiro, K. Morgan, Adaptive remeshing for three-dimensional compressible flow computations, Jour. of Comput. Phys., 103, 269-285, 1992.
  125. C.S. Peskin, Flow patterns around heart valves: a numerical method, J. Comput. Phys., 10, 252-271, 1972.
  126. S. Pirzadeh, Viscous unstructured three dimensional grids by the advancing-layers method, Aerospace Sciences Meeting32, AIAAP 1994-0417, Reno, NV, USA, 1994.
  127. F.P. Preparata and M.I. Shamos, Computational geometry, an introduction, Springer-Verlag, 1985.
  128. P.A. Raviart et J.M. Thomas, Introduction à l'analyse numérique des équations aux dérivées partielles, Masson, Paris, 1998.
  129. S. Rebay, Efficient Unstructured Mesh Generation by Means of Delaunay Triangulation and Bowyer- Watson Algorithm, J. Comput. Phys., 106, 125-138, 1993.
  130. J.-F. Remacle, X. Li, M.S. Shephard and J.E. Flaherty, Anisotropic adaptive simulation of transient flows using discontinuous Galerkin methods, Int. j. numer. meth. eng., 62, 899-923, 2005.
  131. S. Rippa, Long and thin triangles can be good for linear interpolation, SIAM J. Numer. Analysis, 29, 257-270, 1992.
  132. O. Sahni, X.J. Xuo, K.E. Janse and M.S. Shephard, Curved boundary layer meshing for adaptive viscous flow simulations, FEAD, 46, 132-139, 2010.
  133. R. Schneiders and R. Bünten, Automatic generation of hexahedral finite element meshes, Comput. Aided Geom. Des., 12, 693-707, 1995.
  134. R. Schneiders, Octree-based hexahedral mesh generation, Int. j. of Comp. Geom. & Applications, 10(4), 383-398, 2000.
  135. E. Seveno, Towards an adaptive advancing-front mesh generation, Proc. 6 th Int. Meshing Roundtable, 349-360, 1997.
  136. D. Sharov and K. Nakahashi, Hybrid Prismatic/Tetrahedral Grid Generation for Viscous Flow Applications, AIAA Journal, 36(2), 157-162, 1998.
  137. X. Sheng and B.E. Hirsch , Triangulation of trimmed surfaces in parametric space, Comput. Aided Des., 24(8), 437-444, 1992.
  138. S.J. Sherwin and J. Peiro, Mesh generation in curvilinear domains using high-order elements, Int. j. numer. meth. eng., 55, 207-223, 2002.
  139. A. Shostko and R. Löhner, Three-Dimensional Parallel Unstructured Grid Generation, Int. j. numer. meth. eng., 38, 905-925, 1995.
  140. H. Si and K. Gärtner, 3D boundary recovery by constrained Delaunay tetrahedralization, Int. j. numer. meth. eng., 85, 1341-1364, 2011.
  141. A. Tam, D. Ait-Ali-Yahia, M.P. Robichaud, M. Moore, V. Kozel and W.G. Habashi, Anisotropic mesh adaptation for 3D flows on structured and unstructured grids, Comp. Meth. Appl. Mech. Engrg., 189, 1205-1230, 2000.
  142. T. Tezduyar, CFD Methods for Three-Dimensional Computation of Complex Flow Problems, Journal of Wind Engineering and Industrial Aerodynamics, 81, 97-116, 1999.
  143. J.F. Thompson, B.K. Soni and N.P. Weatherill, Handbook of grid generation, CRC Press, 1999.
  144. J.F. Thompson, Z.U.A. Warsi and C.W. Mastin, Numerical grids generation, foundations and applications, North Holland, 1985.
  145. M.G. Vallet, Génération de maillages éléments finis anisotropes et adaptatifs. Thèse Université Paris VI, 1992.
  146. N. Van Phai, Automatic mesh generation with tetrahedron elements, Int. J. Numer. Meth. Eng., 18, 237-289, 1982.
  147. J. C. Vassberg, M. DeHaan and T. Sclafani, Grid generation requirements for accurate drag predictions based on OVERFLOW calculations, AIAA Computational Fluid Dynamics Conference 33, AIAA-2003-4124, 1874-1900, USA, 2003.
  148. D.A. Venditti and D.L. Darmofa, Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows, J. Comput. Phys., 187(1), 22-46, 2003.
  149. R. Verfürth, A review of A Posteriori Error Estimation and Adaptative Mesh-Refinement techniques, Wiley Teubner Mathematics, New York, 1996.
  150. D.J. Walton and D.S. Meek, A triangular G 1 patch from boundary curves, Comp. Aided Design, 28, 113-123, 1996.
  151. D.F. Watson, Computing the n-dimensional Delaunay tessellation with application to Voronoi polytopes, Comput. J., 24, 167-172, 1981.
  152. N.P. Weatherill and O. Hassan, Efficient three-dimensional Delaunay triangulation with automatic point creation and imposed boundary constraints, Int. j. numer. methods eng., 37, 2005-2039, 1994.
  153. N.P. Weatherill, R. Said and K. Morgan, The construction of large unstructured grids by parallel Delaunay grid generation, in Proc. 6 th Int. Conf. on Numerical Grid Generation in Computational Field Simulation, (eds. M. Cross et al.), M.S.U., USA, 53-78, 1998.
  154. X.J. Xuo, M.S. Shephard, R.M. O'Bara, R. Natasia and M.W. Beal, Automatic p-version mesh generation for curved domains, Eng. with Comp., 20, 273-285, 2004.
  155. M.A. Yerry and M.S. Shephard, A modified quadtree approach to finite element mesh generation, IEEE Computer Graphics Appl., 3(1), 39-46, 1983.
  156. M.A. Yerry and M.S. Shephard, Automatic three-dimensional mesh generation by the modified- octree technique, Int. j. numer. meth. eng., 20, 1965-1990, 1984.
  157. O.C. Zienkiewicz, The Finite Element Method, McGraw-Hill, London, 1977 (and subsequent editions).
  158. O.C. Zienkiewicz and J.Z. Zhu, The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique, Int. j. numer. meth. eng., 33(7), 1331-1364, 1992.