Academia.eduAcademia.edu

Outline

Stable Automorphic Forms on Semisimple Groups

2017

Abstract

In this paper, we introduce the concept of stable automorphic forms on semisimple algebraic groups. We use the stability of automorphic forms to study infinite dimensional arithmetic varieties.

References (44)

  1. W.L. Baily, Satake's compactification of V * n , Amer. J. Math. 80 (1958), 348-364.
  2. A. Borel, Introduction to automorphic forms, Proc. Sympos. Pure Math., Vol. 9, Amer. Math. Soc., Providence, R.I. (1966), 199-210.
  3. A. Borel and H. Jacquet, Automorphic forms and automorphic representations, Proc. Symposia in Pure Math., Vol. XXXIII, Part 1 (1979), 189-202.
  4. S. Breulmann and M. Kuss, On a conjecture of Duke-Imamoǧlu, Proc. Amer. Math. Soc. 128 (2000), 1595-1604.
  5. G. Codogni, Hyperelliptic Schottky problem and stable modular forms, Doc. Math. 21 (2016), 445-466.
  6. G. Codogni and N. I. Shepherd-Barron, The non-existence of stable Schokky forms, Compos. Math. 150 (2014), no. 4, 679-690.
  7. W. Duke and Ö. Imanoḡlu, Siegel modular forms of small weight, Math. Ann. 310 (1998), 73-82.
  8. E. Freitag, Holomorphe Differentialformen zu Kongruenzgruppen der Siegelschen Modulgruppe, Invent. Math. no. 30 (1975), 181-196.
  9. E. Freitag, Stabile Modulformen, Math. Ann. 230 (1977), 197-211.
  10. E. Freitag, Siegelsche Modulfunktionen, Springer (1983).
  11. H. Glöckner, Direct limit Lie groups and manifolds, J. Math. Kyoto Univ. 43 (2003), no. 1, 2-26.
  12. D. Grenier, An analogue of Siegel's φ-operator for automorphic forms for GL(n, Z), Trans. Amer. Math. Soc. 331, No. 1 (1992), 463-477.
  13. S. Grushevsky and R. Salvati Manni, The superstring cosmological constant and the Schottky form in genus 5, Amer. J. Math. 133 (4) (2011), 1007-1027.
  14. V. Hansen, Some theorems on direct limits of expanding sequences of manifolds, Math. Scand. 29 (1971), 5-36.
  15. Harish-Chandra, Automorphic forms on semi-simple Lie groups, Notes by J.G.M. Mars, Lecture Notes in Math., vol. 62, Springer-Verlag, Berlin-Heidelberg-New York (1968).
  16. J. Igusa, A desingularization problem in the theory of Siegel modular functions, Math. Ann. 168 (1967), 228-260.
  17. J. Igusa, On the irreducibility of Schottky divisor, J. Fac. Sci. Tokyo 28 (1981), 531-545.
  18. J. Igusa, Schottky's invariant and quadratic forms, E. B. Christoffel: the influence of his work on math- ematics and the physical sciences, Birkhäuser, Basel (1981), 352-362.
  19. T. Ikeda, On the lifting of elliptic cusp forms to Siegel cusp forms of degree 2n, Ann. Math. 154 (2001), 641-681.
  20. L. Ji and J. Jost, Universal moduli spaces of Riemann surfaces, arXiv:1611.08732v1 [math.AG] 26 Nov 2016.
  21. T. Kambayashi, Reviews of [Sh1], Math. Reviews. # 5697 58 (1979).
  22. H. Maass, Über die Darstellung der Modulformen n-ten Grades durch Poincarésche Reihen, Math. Ann. 123 (1951), 125-151.
  23. M. Matone and R. Volpato, Vector-valued modular forms from the Mumford forms, Schottky-Igusa form, product of Thetanullwerte and the amazing Klein formula, Proc. Amer. Math. Soc. 141, no. 8 (2013), 2575-2587.
  24. D. Mumford, Abelian Varieties, Oxford University Press (1970): Reprinted (1985).
  25. C. Poor, Schottky's form and the hyperelliptic locus, Proc. Amer. Math. Soc. 124 (1996), 1987-1991.
  26. H. Resnikoff, Automorphic forms of singular weight are singular forms, Math. Ann. 215 (1975), 173-193.
  27. I. Satake, On the compactification of the Siegel space, J. Indian Math. Soc., 20 (1956), 259-281.
  28. F. Schottky, Zur Theorie der Abelschen Funktionen von vier Variablen, J. Reine Angew. Math. 102 (1888), 304-352.
  29. A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. B. 20 (1956), 47-87.
  30. J.-P. Serre, A Course in Arithmetic, Graduate Texts in Math., Vol. 7, Springer-Verlag (1973).
  31. I. R. Shafarevich, On some infinite dimensional groups, Rend. Mat. e. Appl.(5), vol. 25 (1966), 208-212.
  32. I. R. Shafarevich, On some infinite dimensional groups. II, Math. USSR. Izvestija, vol. 18, No. 1 (1982), 185-194.
  33. A. Terras, Harmonic analysis on symmetric spaces and applications II, Springer-Verlag (1988).
  34. R. Weissauer, Stabile Modulformen und Eisensteinreihnen, Lecture Notes in Math. 1219, Springer- Verlag, Berlin-Heidelberg-New York (1986).
  35. J.-H. Yang, Remarks on Jacobi forms of higher degree, Proc. of the 1993 Workshop on Automorphic Forms and Related Topics, edited by Jin-Woo Son and Jae-Hyun Yang, the Pyungsan Institute for Mathematical Sciences (1993), 33-58.
  36. J.-H. Yang, The Siegel-Jacobi Operator, Abh. Math. Sem. Univ. Hamburg 63 (1993), 135-146.
  37. J.-H. Yang, Singular Jacobi Forms, Trans. Amer. Math. Soc. 347 (6) (1995), 2041-2049.
  38. J.-H. Yang, Construction of vector valued modular forms from Jacobi forms, Canadian J. of Math. 47 (6) (1995), 1329-1339.
  39. J.-H. Yang, Stable Automorphic Forms, Proceedings of Japan-Korea Joint Seminar on Transcendental Number Theory and Related Topics, Masan, Korea (1998), 101-126.
  40. J.-H. Yang, A geometrical theory of Jacobi forms of higher degree, Proceedings of Symposium on Hodge Theory and Algebraic Geometry ( edited by Tadao Oda ), Sendai, Japan (1996), 125-147 or Kyungpook Math. J. 40 (2) (2000), 209-237 or arXiv:math.NT/0602267.
  41. J.-H. Yang, Geometry and Arithmetic on the Siegel-Jacobi Space, Geometry and Analysis on Manifolds, In Memory of Professor Shoshichi Kobayashi (edited by T. Ochiai, A. Weinstein et al), Progress in Mathematics, Volume 308, Birkhäuser, Springer International Publishing AG Switzerland (2015), 275- 325.
  42. J.-H. Yang, Invariant differential operators on the Minkowski-Euclid space, J. Korean Math. Soc. 50 (2013), No. 2, pp. 275-306.
  43. J.-H. Yang, Polarized real tori, J. Korean Math. Soc. 52 (2015), No. 2, pp. 269-331.
  44. C. Ziegler, Jacobi Forms of Higher Degree, Abh. Math. Sem. Hamburg 59 (1989), 191-224. Department of Mathematics, Inha University, Incheon 22212, Korea E-mail address: jhyang@inha.ac.kr