Academia.eduAcademia.edu

Outline

Invariant metrics and Laplacians on Siegel-Jacobi Disk

2006

Abstract

Let D_n be the generalized unit disk of degree n. In this paper, we find Riemannian metrics on the Siegel-Jacobi disk D_n × C^(m,n) which are invariant under the natural action of the Jacobi group explicitly and also compute the Laplacians of these invariant metrics explicitly. These are expressed in terms of the trace form. We give a brief remark on the theory of harmonic analysis on the Siegel-Jacobi disk D_n × C^(m,n).

References (15)

  1. R. Berndt and R. Schmidt, Elements of the Representation Theory of the Jacobi Group, Birkhäuser, 1998.
  2. M. Eichler and D. Zagier, The Theory of Jacobi Forms, Progress in Math., 55, Birkhäuser, Boston, Basel and Stuttgart, 1985.
  3. S. Helgason, Groups and geometric analysis, Academic Press (1984).
  4. H. Maass, Die Differentialgleichungen in der Theorie der Siegelschen Modulfunktionen, Math. Ann. 126 (1953), 44-68.
  5. I. Satake, Algebraic Structures of Symmetric Domains, Kano Memorial Lectures 4, Iwanami Shoton, Publishers and Princeton University Press (1980).
  6. C. L. Siegel, Symplectic Geometry, Amer. J. Math. 65 (1943), 1-86; Academic Press, New York and London (1964);
  7. Gesammelte Abhandlungen, no. 41, vol. II, Springer-Verlag (1966), 274-359.
  8. J.-H. Yang, The Siegel-Jacobi Operator, Abh. Math. Sem. Univ. Hamburg 63 (1993), 135-146.
  9. J.-H. Yang, Singular Jacobi Forms, Trans. Amer. Math. Soc. 347 (6) (1995), 2041-2049.
  10. J.-H. Yang, Construction of vector valued modular forms from Jacobi forms, Canadian J. of Math. 47 (6) (1995), 1329-1339.
  11. J.-H. Yang, The Method of Orbits for Real Lie Groups, Kyungpook Math. J. 42 (2) (2002), 199-272.
  12. J.-H. Yang, Invariant metrics and Laplacians on Siegel-Jacobi space, revised version (2006) or arXiv: math.NT/0507215 v1.
  13. J.-H. Yang, A partial Cayley transform for Siegel-Jacobi space, arXiv:math.NT/0507216 v1.
  14. J.-H. Yang, A note on a fundamental domain for Siegel-Jacobi space, arXiv:math.NT/0507218 or Hous- ton Journal of Mathematics, Volume 32, No. 3 (2006), 701-712.
  15. C. Ziegler, Jacobi Forms of Higher Degree, Abh. Math. Sem. Hamburg 59 (1989), 191-224. Department of Mathematics, Inha University, Incheon 402-751, Republic of Korea E-mail address: jhyang@inha.ac.kr