Academia.eduAcademia.edu

Outline

Partial transpose of permutation matrices

Abstract

The partial transpose of a block matrix M is the matrix obtained by transposing the blocks of M independently. We approach the notion of partial transpose from a combinatorial point of view. In this perspective, we solve some basic enumeration problems concerning the partial transpose of permutation matrices. More specifically, we count the number of permutations matrices which are equal to their partial transpose and the number of permutation matrices whose partial transpose is still a permutation. We solve these problems also when restricted to symmetric permutation matrices only.

References (16)

  1. S. L. Braunstein, S. Ghosh, T. Mansour, S. Severini, and R. C. Wilson, Phys. Rev. A, 73, 012320 (2006). arXiv:quant-ph/0508020v3
  2. E. Bonsdorff, K. Fabel, O. Riihimaa, Schach und zahl, Walter Rau Ver- lag, Düsseldorf, 1966.
  3. D. Bruß and C. Macchiavello, How the first partial transpose was writ- ten. Found. Phys. 35 (2005), no. 11, 1921-1926.
  4. I. Chattopadhyay and D. Sarkar, NPT Bound Entanglement-The Prob- lem Revisited, arXiv:quant-ph/0609050v3.
  5. L. Clarisse, The distillability problem revisited, Quantum In- formation and Computation, Vol. 6, No. 6 (2006) 539-560. arXiv:quant-ph/0510035v2
  6. D. P. DiVincenzo, P. W. Shor, J. A. Smolin, B. Terhal and A. V. Thap- liyal, Phys. Rev. A, 61, 062312 (2000). arXiv:quant-ph/9910026v3
  7. W. Dür, J. I. Cirac, M. Lewenstein and D. Bruß, Phys. Rev. A, 61, 062313 (2000). arXiv:quant-ph/9910022v1
  8. A. Ghosh, V. S. Shekhawat, A. Prakash and S. P. Pal, Hypergraph- theoretic characterizations for LOCC incomparable ensembles of multi- ple multipartite CAT states, Asian Conference on Quantum Information Science, Shiran Kaikan, Kyoto University, Japan, September 3-6, 2007. arXiv:0709.0063v2 [quant-ph]
  9. R. Hildebrand, S. Mancini, S. Severini, Combinatorial laplacians and positivity under partial transpose, Math. Struct. in Comp. Sci., 18 (2008), 205-219. arXiv:cs/0607036v3 [cs.CC]
  10. M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett. A 223 (1996).
  11. L. H. Kauffman and S. J. Lomonaco, Jr., Quantum Entanglement and Topological Entanglement, New Journal of Physics, vol. 4, (2002), 73.1 -73.18.
  12. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, 2000.
  13. A. Peres, Phys. Rev. Lett., 77, 1413 (1996). arXiv:quant-ph/9604005v2
  14. N. J. A. Sloane, (2007), The On-Line Encyclopedia of Integer Sequences, published electronically at www.research.att.com/˜njas/sequences/.
  15. R. P. Stanley, Enumerative Combinatorics. Vol. 1. Cambridge Studies in Advanced Mathematics, 49. Cambridge University Press, Cambridge, 1997.
  16. J. West, Permutations with forbidden subsequences, and stack-sortable permutations, Ph.D. thesis, MIT, 1990.