Academia.eduAcademia.edu

Outline

Artificial Intelligence Applied to Stock Market Trading: A Review

IEEE Access

https://doi.org/10.1109/ACCESS.2021.3058133

Abstract

The application of Artificial Intelligence (AI) to financial investment is a research area that has attracted extensive research attention since the 1990s, when there was an accelerated technological development and popularization of the personal computer. Since then, countless approaches have been proposed to deal with the problem of price prediction in the stock market. This paper presents a systematic review of the literature on Artificial Intelligence applied to investments in the stock market based on a sample of 2326 papers from the Scopus website between 1995 and 2019. These papers were divided into four categories: portfolio optimization, stock market prediction using AI, financial sentiment analysis, and combinations involving two or more approaches. For each category, the initial introductory research to its state-of-the-art applications are described. In addition, an overview of the review leads to the conclusion that this research area is gaining continuous attention and the literature is becoming increasingly specific and thorough.

References (98)

  1. S. Aghabozorgi and Y. W. Teh, ''Stock market co-movement assessment using a three-phase clustering method,'' Expert Syst. Appl., vol. 41, no. 4, pp. 1301-1314, Mar. 2014.
  2. D. E. Allen, M. McAleer, and A. K. Singh, ''Daily market news sentiment and stock prices,'' Appl. Econ., vol. 51, no. 30, pp. 3212-3235, Jun. 2019.
  3. S. Asadi, E. Hadavandi, F. Mehmanpazir, and M. M. Nakhostin, ''Hybridization of evolutionary Levenberg-Marquardt neural networks and data pre-processing for stock market prediction,'' Knowl.-Based Syst., vol. 35, pp. 245-258, Nov. 2012.
  4. A. Azhikodan, A. G. K. Bhat, and M. V. Jadhav, ''Stock trading bot using deep reinforcement learning,'' in Innovations in Computer Science and Engineering. Singapore: Springer, 2019, pp. 41-49.
  5. R. Batra and S. M. Daudpota, ''Integrating StockTwits with sentiment analysis for better prediction of stock price movement,'' in Proc. Int. Conf. Comput., Math. Eng. Technol., Jan. 2018, pp. 1-5.
  6. V. Boginski, S. Butenko, and P. M. Pardalos, ''Statistical analysis of financial networks,'' Comput. Statist. Data Anal., vol. 48, no. 2, pp. 431-443, Feb. 2005. [Online]. Available: http://www.sciencedirect. com/science/article/pii/S0167947304000258
  7. V. Boginski, S. Butenko, and P. M. Pardalos, ''Mining market data: A network approach,'' Comput. Oper. Res., vol. 33, no. 11, pp. 3171-3184, Nov. 2006.
  8. P. J. Bolland and J. T. Connor, ''A constrained neural network Kalman filter for price estimation in high frequency financial data,'' Int. J. Neural Syst., vol. 8, no. 4, pp. 399-415, Aug. 1997.
  9. J. Bollen, H. Mao, and X. Zeng, ''Twitter mood predicts the stock market,'' J. Comput. Sci., vol. 2, no. 1, pp. 1-8, Mar. 2011. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S187775031100007X
  10. A. Booth, E. Gerding, and F. McGroarty, ''Automated trading with performance weighted random forests and seasonality,'' Expert Syst. Appl., vol. 41, no. 8, pp. 3651-3661, Jun. 2014.
  11. R. C. Cavalcante, R. C. Brasileiro, V. L. F. Souza, J. P. Nobrega, and A. L. I. Oliveira, ''Computational intelligence and financial markets: A survey and future directions,'' Expert Syst. Appl., vol. 55, pp. 194-211, Aug. 2016.
  12. M. Chang. (2018). How A.I. Traders Will Dominate Hedge Fund Industry. [Online]. Available: https://www.youtube.com/watch?v=lzaBbQKUtAA
  13. T.-J. Chang, N. Meade, J. E. Beasley, and Y. M. Sharaiha, ''Heuris- tics for cardinality constrained portfolio optimisation,'' Comput. Oper. Res., vol. 27, no. 13, pp. 1271-1302, Nov. 2000. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S030505489900074X
  14. T.-J. Chang, S.-C. Yang, and K.-J. Chang, ''Portfolio optimization problems in different risk measures using genetic algorithm,'' Expert Syst. Appl., vol. 36, no. 7, pp. 10529-10537, Sep. 2009.
  15. C. Chen and Y. Wei, ''Robust multiobjective portfolio optimization: A set order relations approach,'' J. Combinat. Optim., vol. 38, no. 1, pp. 21-49, Jul. 2019, doi: 10.1007/s10878-018-0364-9.
  16. W. Chen, ''Artificial bee colony algorithm for constrained possibilistic portfolio optimization problem,'' Phys. A, Stat. Mech. Appl., vol. 429, pp. 125-139, Jul. 2015.
  17. E. Chong, C. Han, and F. C. Park, ''Deep learning networks for stock market analysis and prediction: Methodology, data representations, and case studies,'' Expert Syst. Appl., vol. 83, pp. 187-205, Oct. 2017.
  18. Y. Crama and M. Schyns, ''Simulated annealing for complex port- folio selection problems,'' Eur. J. Oper. Res., vol. 150, no. 3, pp. 546-571, Nov. 2003. [Online]. Available: http://www.sciencedirect. com/science/article/pii/S0377221702007841
  19. F. D. Paiva, R. T. N. Cardoso, G. P. Hanaoka, and W. M. Duarte, ''Decision- making for financial trading: A fusion approach of machine learning and portfolio selection,'' Expert Syst. Appl., vol. 115, pp. 635-655, Jan. 2018.
  20. K. Doerner, W. J. Gutjahr, R. F. Hartl, C. Strauss, and C. Stummer, ''Pareto ant colony optimization: A Metaheuristic approach to multiobjective portfolio selection,'' Ann. Oper. Res., vol. 131, nos. 1-4, pp. 79-99, Oct. 2004, doi: 10.1023/B:ANOR.0000039513.99038.c6.
  21. M. Ehrgott, K. Klamroth, and C. Schwehm, ''An MCDM approach to portfolio optimization,'' Eur. J. Oper. Res., vol. 155, no. 3, pp. 752-770, Jun. 2004.
  22. D. Enke and S. Thawornwong, ''The use of data mining and neural networks for forecasting stock market returns,'' Expert Syst. Appl., vol. 29, no. 4, pp. 927-940, Nov. 2005. [Online]. Available: http://www. sciencedirect.com/science/article/pii/S0957417405001156
  23. O. Ertenlice and C. B. Kalayci, ''A survey of swarm intelligence for portfolio optimization: Algorithms and applications,'' Swarm Evol. Comput., vol. 39, pp. 36-52, Apr. 2018.
  24. A. Fernández and S. Gómez, ''Portfolio selection using neural networks,'' Comput. Oper. Res., vol. 34, no. 4, pp. 1177-1191, Apr. 2007. [Online]. Available: http://www.sciencedirect.com/science/article/ pii/S0305054805002042
  25. G. H. M. Mendonça, F. G. D. C. Ferreira, R. T. N. Cardoso, and F. V. C. Martins, ''Multi-attribute decision making applied to financial portfolio optimization problem,'' Expert Syst. Appl., vol. 158, Nov. 2020, Art. no. 113527. [Online]. Available: http://www. sciencedirect.com/science/article/pii/S0957417420303511
  26. T. Fischer and C. Krauss, ''Deep learning with long short-term memory networks for financial market predictions,'' Eur. J. Oper. Res., vol. 270, no. 2, pp. 654-669, Oct. 2018.
  27. T. Geva and J. Zahavi, ''Empirical evaluation of an automated intraday stock recommendation system incorporating both market data and textual news,'' Decis. Support Syst., vol. 57, no. 1, pp. 212-223, Jan. 2014.
  28. R. H. Golan and W. Ziarko, ''A methodology for stock market analysis utilizing rough set theory,'' in Proc. Conf. Comput. Intell. Financial Eng., Apr. 1995, pp. 32-40.
  29. E. Hadavandi, H. Shavandi, and A. Ghanbari, ''Integration of genetic fuzzy systems and artificial neural networks for stock price forecasting,'' Knowl.- Based Syst., vol. 23, no. 8, pp. 800-808, Dec. 2010. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0950705110000857
  30. M. Hagenau, M. Liebmann, and D. Neumann, ''Automated news reading: Stock price prediction based on financial news using context-capturing features,'' Decis. Support Syst., vol. 55, no. 3, pp. 685-697, Jun. 2013.
  31. G. Hassan and C. D. Clack, ''Multiobjective robustness for portfolio optimization in volatile environments,'' in Proc. 10th Annu. Conf. Genetic Evol. Comput., 2008, pp. 1507-1514.
  32. C.-M. Hsu, ''A hybrid procedure for stock price prediction by integrating self-organizing map and genetic programming,'' Expert Syst. Appl., vol. 38, no. 11, pp. 14026-14036, May 2011.
  33. C.-M. Hsu, ''A hybrid procedure with feature selection for resolving stock/futures price forecasting problems,'' Neural Comput. Appl., vol. 22, nos. 3-4, pp. 651-671, Mar. 2013.
  34. C. Huang, D. Yang, and Y. Chuang, ''Application of wrapper approach and composite classifier to the stock trend prediction,'' Expert Syst. Appl., vol. 34, no. 4, pp. 2870-2878, May 2008.
  35. C.-L. Huang and C.-Y. Tsai, ''A hybrid SOFM-SVR with a filter-based feature selection for stock market forecasting,'' Expert Syst. Appl., vol. 36, no. 2, pp. 1529-1539, Mar. 2009.
  36. W. Huang, Y. Nakamori, and S.-Y. Wang, ''Forecasting stock market movement direction with support vector machine,'' Comput. Oper. Res., vol. 32, no. 10, pp. 2513-2522, Oct. 2005.
  37. W. Q. Huang, X. T. Zhuang, and S. Yao, ''A network analysis of the Chinese stock market,'' Physica A, Stat. Mech. Appl. vol. 388, pp. 2956-2964, Jul. 2009.
  38. T. H. Roh, ''Forecasting the volatility of stock price index,'' Expert Syst. Appl., vol. 33, no. 4, pp. 916-922, Nov. 2007.
  39. M. A. Kaboudan, ''Genetic programming prediction of stock prices,'' Comput. Econ., vol. 16, no. 3, pp. 207-236, 2000.
  40. C. B. Kalayci, O. Ertenlice, H. Akyer, and H. Aygoren, ''An artificial bee colony algorithm with feasibility enforcement and infeasibility toleration procedures for cardinality constrained portfolio optimization,'' Expert Syst. Appl., vol. 85, pp. 61-75, Nov. 2017.
  41. V. Kansal and R. Kumar, ''Optimized feature extraction based artificial 1301 intelligence technique for empirical analysis of stock market data,'' Int. J. Innov. Technol. Exploring Eng., vol. 8, no. 10, Aug. 2019.
  42. Y. Kara, M.A. Boyacioglu, and Ö. K. Baykan, ''Predicting direction of stock price index movement using artificial neural networks and support vector machines: The sample of the Istanbul Stock Exchange,'' Expert Syst. Appl. vol. 38, no. 5, pp. 5311-5319, 2011. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0957417410011711
  43. M. Kaucic, M. Moradi, and M. Mirzazadeh, ''Portfolio optimization by improved NSGA-II and SPEA 2 based on different risk measures,'' Financial Innov., vol. 5, no. 1, pp. 1-28, Dec. 2019, doi: 10.1186/s40854- 019-0140-6.
  44. M.-J. Kim, S.-H. Min, and I. Han, ''An evolutionary approach to the combination of multiple classifiers to predict a stock price index,'' Expert Syst. Appl., vol. 31, no. 2, pp. 241-247, Aug. 2006.
  45. S. H. Kim and S. H. Chun, ''Graded forecasting using an array of bipolar predictions: Application of probabilistic neural networks to a stock market index,'' Int. J. Forecasting, vol. 14, no. 3, pp. 323-337, Sep. 1998.
  46. R. Kizys, A. Juan, B. Sawik, and L. Calvet, ''A biased-randomized iterated local search algorithm for rich portfolio optimization,'' Appl. Sci., vol. 9, no. 17, p. 3509, Aug. 2019.
  47. R. J. Kuo, C. H. Chen, and Y. C. Hwang, ''An intelligent stock trading decision support system through integration of genetic algorithm based fuzzy neural network and artificial neural network,'' Fuzzy Sets Syst., vol. 118, no. 1, pp. 21-45, Feb. 2001. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0165011498003996
  48. X. Li, H. Xie, L. Chen, J. Wang, and X. Deng, ''News impact on stock price return via sentiment analysis,'' Knowl.-Based Syst., vol. 69, no. 1, pp. 14-23, Oct. 2014.
  49. B. Liu, ''Sentiment analysis and opinion mining,'' Synth. Lectures Hum. Lang. Technol., vol. 5, no. 1, pp. 1-167, 2012.
  50. A. W. Lo, ''Efficient markets hypothesis,'' in The New Palgrave Dictionary of Economics. Basingstoke, U.K.: Palgrave Macmillan, 2007.
  51. W. Long, Z. Lu, and L. Cui, ''Deep learning-based feature engineering for stock price movement prediction,'' Knowl.-Based Syst., vol. 164, pp. 163-173, Jan. 2019.
  52. R. Mansini and M. G. Speranza, ''Heuristic algorithms for the portfolio selection problem with minimum transaction lots,'' Eur. J. Oper. Res., vol. 114, no. 2, pp. 219-233, Apr. 1999.
  53. R. Mansini, W. Ogryczak, and M. G. Speranza, ''Twenty years of linear programming based portfolio optimization,'' Eur. J. Oper. Res., vol. 234, no. 2, pp. 518-535, Apr. 2014.
  54. H. Markowitz, ''Portfolio selection,'' J. Finance, vol. 7, no. 1, pp. 77-91, 1952. [Online]. Available: https://onlinelibrary.wiley.com/ doi/abs/10.1111/j.1540-6261.1952.tb01525.x
  55. M. A. Mittermayer, ''Forecasting intraday stock price trends with text mining techniques,'' in Proc. Annu. Hawaii Int. Conf. Syst. Sci., vol. 37, 2004, pp. 1029-1038.
  56. S. Mohan, S. Mullapudi, S. Sammeta, P. Vijayvergia, and D. C. Anastasiu, ''Stock price prediction using news sentiment analysis,'' in Proc. IEEE 5th Int. Conf. Big Data Comput. Service Appl. (BigDataService), Apr. 2019, pp. 205-208.
  57. R. Moral-Escudero, R. Ruiz-Torrubiano, and A. Suárez, ''Selection of optimal investment portfolios with cardinality constraints,'' in Proc. IEEE Int. Conf. Evol. Comput., Jul. 2006, pp. 2382-2388.
  58. J. J. Murphy, Technical Analysis of the Financial Markets: A Comprehensive Guide to Trading Methods and Applications (New York Institute of Finance Series). New York, NY, USA: New York Institute of Finance, 1999. [Online]. Available: https://books.google. com.br/books?id=5zhXEqdr_IcC
  59. M. Nabipour, P. Nayyeri, H. Jabani, A. Mosavi, and E. Salwana, ''Deep learning for stock market prediction,'' Entropy, vol. 22, no. 8, p. 840, Jul. 2020.
  60. T. H. Nguyen, K. Shirai, and J. Velcin, ''Sentiment analysis on social media for stock movement prediction,'' Expert Syst. Appl., vol. 42, no. 24, pp. 9603-9611, Dec. 2015.
  61. N. Oliveira, P. Cortez, and N. Areal, ''Stock market sentiment lexicon acquisition using microblogging data and statistical measures,'' Decis. Support Syst., vol. 85, pp. 62-73, May 2016.
  62. V. Pagolu, K. Reddy, G. Panda, and B. Majhi, ''Sentiment analysis of Twitter data for predicting stock market movements,'' in Proc. Int. Conf. Signal Process., Commun., Power Embedded Syst., 2017, pp. 1345-1350.
  63. J. Patel, S. Shah, P. Thakkar, and K. Kotecha, ''Predicting stock and stock price index movement using trend deterministic data preparation and machine learning techniques,'' Expert Syst. Appl., vol. 42, no. 1, pp. 259-268, Jan. 2015. [Online]. Available: http://www.sciencedirect. com/science/article/pii/S0957417414004473
  64. N. M. Pindoriya, S. N. Singh, and S. K. Singh, ''Multi-objective mean- variance-skewness model for generation portfolio allocation in electricity markets,'' Electr. Power Syst. Res., vol. 80, no. 10, pp. 1314-1321, Oct. 2010.
  65. A. Ponsich, A. L. Jaimes, and C. A. C. Coello, ''A survey on multiobjective evolutionary algorithms for the solution of the portfolio optimization problem and other finance and economics applications,'' IEEE Trans. Evol. Comput., vol. 17, no. 3, pp. 321-344, Jun. 2013.
  66. J.-Y. Potvin, P. Soriano, and M. Vallée, ''Generating trading rules on the stock markets with genetic programming,'' Comput. Oper. Res., vol. 31, no. 7, pp. 1033-1047, Jun. 2004.
  67. R. Ren, D. D. Wu, and T. Liu, ''Forecasting stock market movement direction using sentiment analysis and support vector machine,'' IEEE Syst. J., vol. 13, no. 1, pp. 760-770, Mar. 2019.
  68. R. T. Rockafellar and S. Uryasev, ''Conditional value-at-risk for general loss distributions,'' J. Banking Finance, vol. 26, no. 7, pp. 1443-1471, Jul. 2002. [Online]. Available: http://www.sciencedirect. com/science/article/pii/S0378426602002716
  69. R. T. Rockafellar and S. Uryasev, ''Optimization of conditional value-at- risk,'' J. Risk, vol. 2, no. 3, pp. 21-41, 2000.
  70. F. Z. Xing, E. Cambria, and Y. Zhang, ''Sentiment-aware volatility forecasting,'' Knowl.-Based Syst., vol. 176, pp. 68-76, Jul. 2019.
  71. Y. Ruan, A. Durresi, and L. Alfantoukh, ''Using Twitter trust network for stock market analysis,'' Knowl.-Based Syst., vol. 145, pp. 207-218, Apr. 2018.
  72. K. Schierholt and C. H. Dagli, ''Stock market prediction using different neural network classification architectures,'' in Proc. IEEE/IAFE Conf. Comput. Intell. Financial Eng., Mar. 1996, pp. 72-78.
  73. R. P. Schumaker and H. Chen, ''A discrete stock price prediction engine based on financial news,'' Computer, vol. 43, no. 1, pp. 51-56, Jan. 2010.
  74. R. P. Schumaker and H. Chen, ''Textual analysis of stock market prediction using breaking financial news: The AZFin text system,'' ACM Trans. Inf. Syst., vol. 27, no. 2, pp. 1-19, Feb. 2009.
  75. S. M. Seyedhosseini, M. J. Esfahani, and M. Ghaffari, ''A novel hybrid algorithm based on a harmony search and artificial bee colony for solving a portfolio optimization problem using a mean-semi variance approach,'' J. Central South Univ., vol. 23, no. 1, pp. 181-188, Jan. 2016.
  76. Y. L. T. V. Silva, A. B. Herthel, and A. Subramanian, ''A multi- objective evolutionary algorithm for a class of mean-variance port- folio selection problems,'' Expert Syst. Appl., vol. 133, pp. 225-241, Nov. 2019.
  77. P. C. Sinha, ''Stocks' pricing dynamics and behavioral finance: A review,'' Manage. Sci. Lett., vol. 5, no. 9, pp. 797-820, 2015.
  78. J. Smailović, M. Grčar, N. Lavrač, and M. Žnidaršič, Predictive Sentiment Analysis of Tweets: A Stock Market Application (Lecture Notes in Computer Science: Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 7947. Berlin, Germany: Springer, 2013, pp. 77-88.
  79. M. G. Speranza, ''A heuristic algorithm for a portfolio optimization model applied to the milan stock market,'' Comput. Oper. Res., vol. 23, no. 5, pp. 433-441, May 1996.
  80. R. E. Steuer and P. Na, ''Multiple criteria decision making combined with finance: A categorized bibliographic study,'' Eur. J. Oper. Res., vol. 150, no. 3, pp. 496-515, Nov. 2003. [Online]. Available: http://www. sciencedirect.com/science/article/pii/S0377221702007749
  81. R. Subbu, P. Bonissone, N. Eklund, S. Bollapragada, and K. Chalermkraivuth, ''Multiobjective financial portfolio design: A hybrid evolutionary approach,'' in Proc. IEEE Congr. Evol. Comput., vol. 2, Sep. 2005, pp. 1722-1729.
  82. W. Sun, C. Tian, and G. Yang, ''Network analysis of the stock market,'' Stanford Univ., Stanford, CA, USA, Tech. Rep. 70, 2015.
  83. S. Takahashi, M. Takahashi, H. Takahashi, and K. Tsuda, Analysis of Stock Price Return Using Textual Data and Numerical Data Through Text Mining (Lecture Notes in Computer Science: Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 4252. Berlin, Germany: Springer, 2006, pp. 310-316.
  84. S. Takahashi, M. Takahashi, H. Takahashi, and K. Tsuda, Analysis of the Relation Between Stock Price Returns and Headline News Using Text Categorization (Lecture Notes in Computer Science: Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 4693. Berlin, Germany: Springer, 2007, pp. 1339-1345.
  85. C. K. Vignesh, ''Applying machine learning models in stock market prediction,'' EPRA Int. J. Res. Develop., vol. 5, no. 4, pp. 395-398, Apr. 2020.
  86. B. Wang, H. Huang, and X. Wang, ''A novel text mining approach to financial time series forecasting,'' Neurocomputing, vol. 83, pp. 136-145, Apr. 2012.
  87. Y. Wang, ''Predicting stock price using fuzzy grey prediction system,'' Expert Syst. Appl., vol. 22, no. 1, pp. 33-38, Jan. 2002. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0957417401000471
  88. Y. Wang, ''Mining stock price using fuzzy rough set system,'' Expert Syst. Appl., vol. 24, no. 1, pp. 13-23, Jan. 2003.
  89. B. Wuthrich, V. Cho, S. Leung, D. Permunetilleke, K. Sankaran, and J. Zhang, ''Daily stock market forecast from textual data,'' in Proc. IEEE Int. Conf. Syst., Man, Cybern., vol. 3, Oct. 1998, pp. 2720-2725.
  90. W. Zadrozny, ''A comparison of neural network methods for accurate sentiment analysis of stock market tweets,'' in Proc. ECML PKDD Workshops, MIDAS PAP, vol. 11054, Dublin, Ireland. Cham, Switzerland: Springer, Sep. 2019, p. 51.
  91. W.-G. Zhang, Y.-J. Liu, and W.-J. Xu, ''A possibilistic mean-semivariance- entropy model for multi-period portfolio selection with transaction costs,'' Eur. J. Oper. Res., vol. 222, no. 2, pp. 341-349, Oct. 2012.
  92. L. Malandri, F. Z. Xing, C. Orsenigo, C. Vercellis, and E. Cambria, ''Public mood-driven asset allocation: The importance of financial sentiment in portfolio management,'' Cognit. Comput., vol. 10, no. 6, pp. 1167-1176, Dec. 2018.
  93. Z. Zhanggui, H. Yan, and A. M. Fu, ''A new stock price prediction method based on pattern classification,'' in Proc. Int. Joint Conf. Neural Netw., vol. 6, 1999, pp. 3866-3870.
  94. X. Zhong and D. Enke, ''Predicting the daily return direction of the stock market using hybrid machine learning algorithms,'' Financial Innov., vol. 5, no. 1, pp. 1-20, Dec. 2019.
  95. F. Z. Xing, E. Cambria, and R. E. Welsch, ''Intelligent asset allocation via market sentiment views,'' IEEE Comput. Intell. Mag., vol. 13, no. 4, pp. 25-34, Nov. 2018.
  96. H. Zhu, Y. Wang, K. Wang, and C. Y. Chen, ''Particle Swarm Optimization (PSO) for the constrained portfolio optimization problem,'' Expert Syst. Appl. vol. 38, no. 8, pp. 10161-10169, 2011.
  97. J. M. T. Wu, Z. Li, G. Srivastava, M. H. Tasi, and J. C.-W. Lin, ''A graph- based convolutional neural network stock price prediction with leading indicators,'' Softw Pract Exper., vol. 2020, pp. 1-17, Oct. 2020.
  98. H. H. Tsai, M. E. Wu, and W. H. Wu, ''The information content of implied volatility skew: Evidence on Taiwan stock index options,'' Data Sci. Pattern Recognit., vol. 1, no. 1, pp. 48-53, 2017.