Positive semigroups and abstract Lyapunov equations
2014
Abstract
We consider abstract equations of the form Ax=-z on a locally convex space, where A generates a positive semigroup and z is a positive element. This is an abstract version of the operator Lyapunov equation A*P+PA=-Q from control theory. It is proved that under suitable assumptions existence of a positive solution implies that -A has a positive inverse, and the generated semigroup is asymptotically stable. We do not require that z is an order unit, or that the space contains any order units. As an application, we generalize Wonham's theorem on the operator Lyapunov equations with detectable right hand sides to reflexive Banach spaces.
References (39)
- A. Albanese, F. Kühnemund, Trotter-Kato approximation theorems for locally equicontinuous semigroups, Rivista di Mathematica della Università de Parma, 1 (2002) 19-53.
- A. Bensoussan, G. Da Prato, M. Delfour, S. Mitter, Representation and control of infinite dimensional systems, second edition, Birkhäuser, Boston, 2007.
- O. Bratteli, D. Robinson, Operator algebras and quantum statistical mechanics 1, Texts and Monographs in Physics, Springer-Verlag, New York, 1987.
- P. Clément et al., One-parameter semigroups, CWI Monographs 5, North-Holland Publishing Co., Amsterdam, 1987.
- R. Curtain, A. Pritchard, Infinite dimensional linear systems theory, Lecture Notes in Control and Information Sciences, vol. 8, Springer-Verlag, Berlin-New York, 1978.
- R. Datko, Extending a theorem of A. M. Liapunov to Hilbert space, J. Math. Anal. Appl. 32 (1970) 610-616.
- D. Drivaliaris, N. Yannakakis, Hilbert space structure and positive operators, J. Math. Anal. Appl., 305 (2005), no. 2, 560-565.
- T. Eisner, B. Farkas, R. Nagel, A. Serény, Weakly and almost weakly stable C 0 -semigroups. International Journal of Dynamical Systems and Differential Equations, 1 (2007), no. 1, 44-57.
- K.-J. Engel, R. Nagel, One-parameter semigroups for linear evolution equations. Graduate Texts in Mathematics 194, Springer-Verlag, New York, 2000.
- J. Freeman, The tensor product of semigroups and the operator equation SX -XT = A, J. Math. Mech. 19 (1969/1970), 819-828.
- B. Goldys, J. van Neerven, Transition semigroups of Banach space-valued Ornstein-Uhlenbeck processes, Acta Appl. Math. 76 (2003), no. 3, 283-330.
- U. Groh, F. Neubrander, Stabilität starkstetiger, positiver Operatorhalbgruppen auf C * - Algebren. Math. Ann. 256 (1981), no. 4, 509-516.
- N. Kalton, S. Konyagin, L. Veselý, Delta-semidefinite and delta-convex quadratic forms in Banach spaces, Positivity, 12 (2008), no. 2, 221-240.
- S. Koshkin, Concave equations in Banach cones, Appl. Anal. 80 (2001), no. 3-4, 449-475.
- F. Kühnemund, Bi-continuous semigroups on spaces with two topologies: the- ory and applications, Dissertation Universität Tübingen (2001), available at http://tobias-lib.uni-tuebingen.de/volltexte/2001/236
- F. Kühnemund, A Hille-Yosida theorem for bi-continuous semigroups, Semigroup Forum 67 (2003), no. 2, 205-225.
- M. Kunze, Continuity and equicontinuity of semigroups on norming dual pairs, Semigroup Forum 79 (2009), no. 3, 540-560.
- M. Kunze, Pettis-type integral and applications to transition semigroups, Czechoslovak Math. J. 61 (136) (2011), no. 2, 437-459.
- P. Lancaster, Theory of matrices, Academic Press, New York, 1969.
- B. Lin, On Banach spaces isomorphic to its conjugate, in Studies and Essays (presented to Yu-why Chen on his 60th birthday, April 1, 1970), National Taiwan University, Taipei, 1970, pp. 151-156.
- M. Megan, On stability of controlled systems in Banach spaces, Glas. Mat. Ser. III, 18(38) (1983), no. 1, 187-201.
- J. van Neerven, Exponential stability of operators and operator semigroups, J. Funct. Anal. 130 (1995), no. 2, 293-309.
- J. van Neerven, B. Straub, L. Weis, On the asymptotic behaviour of a semigroup of linear operators, Indagationes Mathematicae 6 (1995), no. 4, 453-476.
- J. van Neerven, Null controllability and the algebraic Riccati equation in Banach spaces, OSIAM J. Control Optim. 43 (2004/05), no. 4, 1313-1327.
- V. Phat, T. Kiet, On the Lyapunov equation in Banach spaces and applications to control problems, Int. J. Math. Math. Sci. 29 (2002), no. 3, 155-166.
- M. Reed, B. Simon, Methods of modern mathematical physics I: Functional analysis, Aca- demic Press, New York, 1972.
- M. Reed, B. Simon, Methods of modern mathematical physics II: Fourier analysis, self- adjointness, Academic Press, New York, 1975.
- R. Ryan, Introduction to tensor products of Banach spaces, Springer Monographs in Mathe- matics, Springer-Verlag, London, 2002.
- W. Rudin, Functional analysis, McGraw-Hill, New York, 1991
- B. Sari, T. Schlumprecht, N. Tomczak-Jaegermann, V. Troitsky, On norm closed ideals in L(l p , l q ), Studia Mathematica 179 (2007), no. 3, 239-262.
- H. Schaefer, Topological vector spaces, Graduate Texts in Mathematics, vol. 3, Springer- Verlag, New York-Berlin, 1971.
- S.-Y. Shaw, Ergodic limits of tensor product semigroups, J. Math. Anal. Appl. 76 (1980), no. 2, 432-439.
- S.-Y. Shaw, S. Lin, On the equations Ax = q and SX -XT = Q, J. Funct. Anal. 77 (1988), no. 2, 352-363.
- M. Takesaki, Theory of operator algebras I, Springer-Verlag, New York, 1979.
- G. Weiss, Weak L p -stability of a linear semigroup on a Hilbert space implies exponential stability, J. Differential Equations 76 (1988), no. 2, 269-285.
- W. Wonham, Linear multivariable control. A geometric approach, Applications of Mathemat- ics, vol.10, Springer-Verlag, New York, 1985.
- K. Yosida, Functional analysis, Die Grundlehren der Mathematischen Wissenschaften, vol. 123, Academic Press, New York; Springer-Verlag, Berlin, 1965.
- J. Zabczyk, Remarks on the algebraic Riccati equation in Hilbert space, Appl. Math. Optim. 2 (1975/76), no. 3, 251-258.
- J. Zabczyk, Mathematical control theory: an introduction, Birkhuser, Boston, 1992.