Academia.eduAcademia.edu

Outline

Big data stream analysis: a systematic literature review

Journal of Big Data

https://doi.org/10.1186/S40537-019-0210-7

Abstract

Advances in information technology have facilitated large volume, high-velocity of data, and the ability to store data continuously leading to several computational challenges. Due to the nature of big data in terms of volume, velocity, variety, variability, veracity, volatility, and value [1] that are being generated recently, big data computing is a new trend for future computing. Big data computing can be generally categorized into two types based on the processing requirements, which are big data batch computing and big data stream computing Abstract Recently, big data streams have become ubiquitous due to the fact that a number of applications generate a huge amount of data at a great velocity. This made it difficult for existing data mining tools, technologies, methods, and techniques to be applied directly on big data streams due to the inherent dynamic characteristics of big data. In this paper, a systematic review of big data streams analysis which employed a rigorous and methodical approach to look at the trends of big data stream tools and technologies as well as methods and techniques employed in analysing big data streams. It provides a global view of big data stream tools and technologies and its comparisons. Three major databases, Scopus, ScienceDirect and EBSCO, which indexes journals and conferences that are promoted by entities such as IEEE, ACM, SpringerLink, and Elsevier were explored as data sources. Out of the initial 2295 papers that resulted from the first search string, 47 papers were found to be relevant to our research questions after implementing the inclusion and exclusion criteria. The study found that scalability, privacy and load balancing issues as well as empirical analysis of big data streams and technologies are still open for further research efforts. We also found that although, significant research efforts have been directed to real-time analysis of big data stream not much attention has been given to the preprocessing stage of big data streams. Only a few big data streaming tools and technologies can do all of the batch, streaming, and iterative jobs; there seems to be no big data tool and technology that offers all the key features required for now and standard benchmark dataset for big data streaming analytics has not been widely adopted. In conclusion, it was recommended that research efforts should be geared towards developing scalable frameworks and algorithms that will accommodate data stream computing mode, effective resource allocation strategy and parallelization issues to cope with the ever-growing size and complexity of data.

References (151)

  1. Mavragani A, Ochoa G, Tsagarakis KP. Assessing the methods, tools, and statistical procedures in Google trends research: systematic review. J Med Internet Res. 2018;20(11):e270.
  2. Sun D, Zhang G, Zheng W, Li K. Key technologies for big data stream computing. In: Li K, Jiang H, Yang LT, Guz- zocrea A, editors. Big data algorithms, analytics and applications. New York: Chapman and Hall/CRC; 2015. p. 193-214. ISBN 978-1-4822-4055-9.
  3. Qian ZP, He Y, Su CZ et al. TimeStream: Reliable stream computation in the cloud. In: Proc. 8th ACM European conference in computer system, EuroSys 2013. Prague: ACM Press; 2013. p. 1-4.
  4. Liu R, Li Q, Li F, Mei L, Lee, J. Big data architecture for IT incident management. In: Proceedings of IEEE international conference on service operations and logistics, and informatics (SOLI), Qingdao, China. 2014. p. 424-9.
  5. Sakr S. An introduction to Infosphere streams: A platform for analysing big data in motion. IBM. 2013. https :// www.ibm.com/devel operw orks/libra ry/bd-strea msint ro/index .html. Accessed 7 Oct 2018.
  6. Xhafa F, Naranjo V, Caballé S. Processing and analytics of big data stream with Yahoo!S4. In: 2015 IEEE 29th inter- national conference on advanced information networking and applications, Gwangiu, South Korea, 24-27 March 2015. 2015. https ://doi.org/10.1109/aina.2015.194.
  7. Marz N. Storm: distributed and fault-tolerant real-time computation. In: Paper presented at Strata conference on making data work, Santa Clara, California, 28 Feb-1 March 2012. 2012. https ://cdn.oreil lysta tic.com/en/asset s/1/ event /75/Storm _%20dis tribu ted%20and %20fau lt-toler ant%20rea ltime %20com putat ion%20Pre senta tion.pdf. Accessed 25 Jan 2018.
  8. Ballard C, Farrell DM, Lee M, Stone PD, Thibault S, Tucker S. IBM InfoSphere Streams: harnessing data in motion. IBM Redbooks. 2010.
  9. Joseph S, Jasmin EA, Chandran S. Stream computing: opportunities and challenges in smart grid. Procedia Tech- nol. 2015;21:49-53.
  10. IBM Research (no date) Stream computing platforms, applications and analytics. IBM. http://resea rcher .watso n.ibm.com/resea rcher /view_grp.php?id=2531 Accessed 5 Mar 2019.
  11. Gantz J, Reinsel D. The digital universe in 2020: big data, bigger digital shadows, and biggest growth in the Far East. New York: IDC iView: IDC Analyse future; 2012.
  12. Cortes R, Bonnaire X, Marin O, Sens P. Stream processing of healthcare sensor data: studying user traces to identify challenges from a big data perspective. The 4th international workshop on body area sensor networks (BAS- Net-2015). Procedia Comput Sci. 2015;52:1004-9.
  13. Chung D, Shi H. Big data analytics: a literature review. J Manag Anal. 2015;2(3):175-201.
  14. Lu J, Li D. Bias correction in a small sample from big data. IEEE Trans Knowl Data Eng. 2013;25(11):2658-63.
  15. Garzo A, Benczur AA, Sidlo CI, Tahara D, Ywatt EF. Real-time streaming mobility analytics. In: Proc. 2013 IEEE interna- tional conference on big data, big data, Santa Clara, CA, United States, IEEE Press. 2013. p 697-702.
  16. Zaharia M, Das T, Li H, Hunter T, Shenker S, Stoica I. Discretized streams: fault-tolerant streaming computation at scale. In: Proc. the 24th ACM symposium on operating system principles, SOSP 2013, Farmington, PA, United States. New York: ACM Press; 2013. p. 423-38.
  17. Fan J, Liu H. Statistical analysis of big data on pharmacogenomics. Adv Drug Deliv Rev. 2013;65(7):987-1000.
  18. Bifet A, Holmes G, Kirkby R, Pfahringer B. Moa: massive online analysis. J Mach Learn Res. 2010;11:1601-4.
  19. Akter S, Fosso WS. Big data analytics in e-commerce: a systematic review and agenda for future research. Electr Markets. 2016;26:173-94.
  20. Sivarajah U, Kamal MM, Irani Z, Weerakkody V. Critical analysis of big data challenges and analytical methods. J Bus Res. 2016;70:263-86.
  21. Wienhofen LW, Mathisen BM, Roman D. Empirical big data research: a systematic literature mapping. CoRR, abs/1509.03045. 2015.
  22. Habeeb RAA, Nasaruddin F, Gani A, Hashem IAT, Ahmed E, Imran M. Real-time big data processing for anomaly detection: a survey. Int J Inform Manage. 2018;45:289-307. https ://doi.org/10.1016/j.ijinf omgt.2018.08.006.
  23. Mehta N, Pandit A. Concurrence of big data analytics in healthcare: a systematic review. Int J Med Inform. 2018;114:57-65.
  24. Kitchenham BA, Charters S. Guidelines for performing systematic literature review in software engineering. Techni- cal report 2(3), EBSE-2007-01, Keele University and University of Durham. 2007.
  25. Host M, Orucevic-Alagic A. A systematic review of research on open source software in commercial software prod- uct development. 2013. http://www.bcs.org/uploa d/pdf/ewic_ea10_sessi on5pa per2.pdf. Accessed 2 Mar 2018.
  26. Millman N. Analytics for business. Computerworld. 2014. https ://www.compu terwo rld.com/artic le/24758 40/big- data/8-consi derat ions-when-selec ting-big-data-techn ology .html. Accessed 7 Oct 2018.
  27. Oussous A, Benjelloun F, Lachen AA, Belfkih S. Big data technologies: a survey. J King Saud Univ Comput Inform Sci. 2018;30:431-48.
  28. Becker H, Naaman M, Gravano L. Learning similarity metrics for event identification in social media. In: Proceed- ings of the third ACM international conference on web search and data mining (WSDM'10), ACM New York, NY, USA, 4-6 Feb 2010. 2010. p. 291-300.
  29. Aggarwal CC, Zhai C. A survey of text clustering algorithms. In: Aggarwal CC, Zhai C, editors. Mining text data. New York: Springer; 2012. p. 77-128.
  30. Panagiotou N, Katakis I, Gunopulos D. Detecting events in online social networks: Definitions, trends and chal- lenges. In: Michaelis S, et al., editors. Solving large scale learning tasks: challenges and algorithms. Lecture Notes in Computer Science, vol. 9850. Cham: Springer; 2016. p. 42-84. https ://doi.org/10.1007/978-3-319-41706 -6_2.
  31. Deepa MS, Sujatha N. Comparative study of various clustering techniques and its characteristics. Int J Adv Netw Appl. 2014;5(6):2104-16.
  32. Reddy KSS, Bindu CS. A review of density-based clustering algorithms for big data analysis. In: International confer- ence on I-SMAC (IoT in Social, Mobile, Analytic, and Cloud), Palladam, India 10-11 February 2017, IEEE. 2017. https ://doi.org/10.1109/i-smac.2017.80583 22.
  33. Pelkowitz L. A continuous relaxation labelling algorithm for Markov random fields. IEEE Trans Syst Man Cybern. 1990;20:709-15.
  34. Li SZ. Markov random field modelling in image analysis. New York: Springer; 2001.
  35. Zhong S. Efficient streaming text clustering. Neural Netw. 2005;18:5-6.
  36. Aggarwal CC, Yu PS. A framework for clustering massive text and categorical data streams. In: Proceedings of the sixth SIAM international conference on data mining, Bethesda, MD, USA, 20-22 Apr 2016. 2006. https ://doi. org/10.1137/1.97816 11972 764.44.
  37. Li H, Jiang X, Xiong L, Liu J. Differentially private histogram publication for dynamic datasets: an adaptive sampling approach. Proc ACM Int Conf Knowl Manag. 2015. p. 1001-10. https ://doi.org/10.1145/28064 16.28064 41.
  38. Deng JD. Outline detection energy data streams using incremental and kernel PCA algorithms. 2016 IEEE 16th international conference on data mining workshops. 2016. p. 390-7. https ://doi.org/10.1109/icdmw .2016.158.
  39. Limsopatham N, Collier N. Adapting phrase-based machine translation to normalise medical terms in social media messages. In: Proceedings of the 2015 conference on empirical methods in natural language processing, EMNLP 2015, Lisbon. 2015. p.ρ 1675-80.
  40. Kaushik R, Apoorva CS, Mallya D, Chaitanya JNVK, Kamath SS. Sociopedia: an interactive system for event detec- tion and trend analysis for Twitter data. In: Nagar A, Mohapatra D, Chaki N (eds) Smart innovation, systems and technologies, proceedings of 3rd international conference on advanced computing, networking and informatics. New Delhi: Springer; 2016.
  41. Carter S, Weerkamp W, Tsagkias E. Microblog language identification: overcoming the limitations of short, unedited and idiomatic text. Lang Resour Eval J. 2013;47(1):195-215.
  42. Pooja P, Pandey A. Impact of memory intensive applications on performance of cloud virtual machine. In: Pro- ceedings of 2014 recent advances in engineering and computational sciences (RAECS), UIET Panjab University Chandigarh, 6-8 March 2014. 2014. p. 1-6. https ://doi.org/10.1109/raecs .2014.67996 29.
  43. Chang M, Choi IS, Niu D, Zheng H. Performance impact of emerging memory technologies on big data applica- tions: a latency-programmable system emulation approach. In: Proceedings of 2018 on great lake symposium on VLSI (GLSVLSI'18), Chicago, IL, USA, ACM New York, NY, USA, 23-25 May 2018. 2018. p. 439-42. https ://doi. org/10.1145/31945 54.31946 33.
  44. Yang W, Da Silva A, Picard ML. Computing data quality indicators on big data streams using a CEP. In: International workshop on computational intelligence for multimedia understanding IWCIM, Prague, Czech Republic, 29-30 October 2015. 2015.
  45. Neumeyer L, Robbins B, Nair A, Kesari A. S4: Distribute stream computing platform. In: Proceedings of the 2010 IEEE international conference on data mining workshops. 2010. p. 170-7. https ://doi.org/10.1109/icdmw .2010.172.
  46. Inoubli W, Aridhi S, Mezni H, Maddouri M, Nguifo E. A comparative study on streaming frameworks for big data. In: 44th international conference on very large databases: workshop LADaS-Latin American Data Science, Aug 2018, Rio de Janeiro, Brazil. 2018. p. 1-8.
  47. Peng D, Dabek F Large-scale incremental processing using distributed transactions and notifications. In: Proc 9th USENIX conf oper sys. des implement, Vancouver, BC, Canada, 4-6 Oct 2010. 2010. p. 1-15.
  48. Marz N. Trident. 2012. https ://githu b.com/natha nmarz /storm /wiki/Tride nt-tutor ial. Accessed 8 Mar 2018.
  49. Babcock B, Babu S, Datar M, Motwani R, Widom J. Models and issues in data stream systems. In: Proc of the 21st ACM SIGACT-SIGMOD-SIGART symposium on principles of database systems (PODS), Madison, Wisconsin, 3-5 June 2002. 2002. p. 1-16.
  50. Chandrasekaran S, Cooper O, Deshpande A, Franklin MJ, Hellerstein JM, Hong W, Krishnamurthy S, Madden SR, Reiss F, Shah MA. TelegraphCQ: Continuous dataflow processing. In: Proceedings of the 2003 ACM SIGMOD inter- national conference on management of data, San Diego, California, 9-12 Jun 2003. 2003. p. 668.
  51. Abadi DJ, Ahmad Y, Balazinska M, Cherniack M, Hwang JH, Lindner W, Maskey AS, Rasin E, Ryvkina E, Tatbul N, Xing Y, Zdonik S. The design of the borealis stream processing engine. Second biennial conference on innovative data systems research (CIDR 2005). CA: Asilomar; 2005. p. 277-89.
  52. Groleat T. High-performance traffic monitoring for network security and management. Human-computer interac- tion [cs.HC]. Télécom Bretagne; Université de Bretagne Occidentale; 2014.
  53. Kamburugamuve S, Fox G, Leake D, Qiu J. Survey of distributed stream processing for large stream sources. Grids UCS Indiana Educ. 2013. https ://doi.org/10.13140 /rg.2.1.3856.2968.
  54. Murthy S. What are the disadvantages of Redis? 2016. https ://www.quora .com/What-are-the-disad vanta ges-of- Redis . Accessed 8 Mar 2018.
  55. Su X, Gilman E, Wetz P, Riekki J, Zuo Y, Leppanen T. Stream reasoning for the internet of things: challenges and gap analysis. WIMS '16 proceedings of the 6th international conference on web intelligence, mining and semantics, Nîmes, France-June 13-15, New York: ACM. Article no 1. 2016. https ://doi.org/10.1145/29128 45.29128 53.
  56. Morales GDF, Bifet A. SAMOA: scalable advanced massive online analysis. J Mach Learn Res. 2015;16(1):149-53.
  57. Amazon Web Services. Lambda architecture for batch and stream processing. 2018. https ://d1.awsst atic.com/ white paper s/lambd a-archi tecur e-on-for-batch -aws.pdf Accessed 2 May 2019.
  58. Kreps J. Questioning the Lambda architecture. 2014. https ://www.oreil ly.com/ideas /quest ionin g-the-lambd a-archi tectu re. Accessed 2 May 2019.
  59. Tay Y. Data generation for application-specific benchmarking. Proc VLDB Endowment. 2011;4(12):1470-3.
  60. HiBench big data benchmark suite. https ://githu b.com/intel -hadoo p/HiBen ch. Accessed 21 Dec 2018.
  61. Hadoop 1.2.1 Documentation. GridMix. https ://hadoo p.apach e.org/docs/r1.2.1/gridm ix.html. Accessed 8 Mar 2018.
  62. Ouaknine K, Carey M, KirkPatrick S. The PigMix benchmark on Pig, MapReduce, and HPCC systems. 2015 IEEE international conference on big data, New York, NY, USA, 27 June-2 July 2015. p. 643-8. https ://doi.org/10.1109/ bigda tacon gress .2015.99.
  63. Ghazal A, Rabl T, Hu M, Raab F, Poess M, Crolotte A, Jacobson H. BigBench: towards an industry standard bench- mark for big data analytics. In: Proceedings of the 2013 ACM SIGMOID international conference on management of data, New York, NY, USA, 22-27 Jun 2013. p. 1197-203.
  64. Bergamaschi S, Gagliardelli L, Simonini G, Zhu S. BigBench workload executed by using apache flink. Procedia Manuf. 2017;11:695-702. https ://doi.org/10.1016/j.promf g.2017.07.169.
  65. Wang L, Zhan J, Luo C, Zhu Y, Yang Q, He Y, et al. BigDataBench: a big data benchmark suite from internet services. In: 2014 IEEE 20th international symposium on high performance architecture (HPCA), Orlando, FL, USA: IEEE, 15-19 February 2014. 2014. https ://doi.org/10.1109/hpca.2014.68359 58.
  66. Gao W, Zhan J, Wang L, Luo C, Zheng D, Wen X, et al. BigDataBench: A scalable and unified big data and AI bench- mark suite. 2018. arXiv.org > cs > arXiv :1802.08254 v2. https ://arxiv .org/abs/1802.08254 v2.
  67. Liao X, Gao Z, Ji W, Wang Y. An enforcement of real-time scheduling in Spark Streaming. 6th international green and sustainable computing conference, IEEE. 2016. https ://doi.org/10.1109/igcc.2015.73937 30. p. 1-6.
  68. Agerri R, Artola X, Beloki Z, Rigau G, Soroa A. Big data for natural language processing: a streaming approach. Knowledge-based systems. 2015;79:36-42 ISSN 0950-7051.
  69. Krawczyk B, Woźniak M. Incremental weighted one-class classifier for mining stationary data streams. J Comput Sci. 2015;9:19-25.
  70. Chan SWK, Chong MWC. Sentiment analysis in financial texts. Decis Support Syst. 2017;94:53-64.
  71. Rakthanmanon T, Campana B, Mueen A, Batista G, Westover B, Zhu Q, Zakaria J, Keogh E. Addressing big data time series: mining trillions of time series subsequences under dynamic time warping. ACM Trans Knowl Discov Data. 2013;7(3):31. https ://doi.org/10.1145/25004 89.
  72. Hadian A, Shahrivari S. High-performance parallel k-means clustering for disk-resident datasets on multi-core CPUs. J Supercomput. 2014;69(2):845-63.
  73. Mozafari B, Zeng K, D' Antoni L, Zaniolo C. High-performance complex event processing over hierarchical data. ACM Trans Datab Syst. 2013;38(4):39. https ://doi.org/10.1145/25367 79.
  74. Sun Y, Wang Z, Liu H, Du C, Yuan J. Online ensemble using adaptive windowing for data streams with concept drift. Int J Distrib Sens Netw. Article ID 4218973, 9 pages. 2016. http://dx.doi.org/10.1155/2016/42189 73.
  75. Nguyen DT, Jung JJ. Real-time event detection on social data stream. Mobile Netw Appl. 2014;20(4):475-86.
  76. Tsagkatakis G, Beferull-Lozano B, Tsakalides P. Singular spectrum-based matrix completion for time series recovery and prediction. EURASIP J Adv Signal Proces. 2016;2016:66. https ://doi.org/10.1186/s1363 4-016-0360-0.
  77. Papapetrou O, Garofalakis M, Deligiannakis A. Sketching distributed sliding-window data streams. VLDB J. 2015;24:345-68. https ://doi.org/10.1007/s0077 8-015-0380-7.
  78. Elkhoukhi H, NaitMalek Y, Berouine A, Bakhouya M, Elouadghiri D, Essaaidi M. Towards a real-time occupancy detection approach for smart buildings. Procedia Comput Sci. 2018;134:114-20.
  79. Chakrabarti C. Delivering interactive access to data at massive scale at Barclays. Austin. 2016.
  80. Kovacevc I, Mekterovic I. Novel BI data architectures. MIPRO 2018, Opatija, Croatia. 2018. p. 1191-6.
  81. Veiga J, Enes J, Exposito RR, Tourino J. BDEv 3.0: energy efficiency and microarchitectural characterization of big data processing frameworks. Fut Generat Comput Syst. 2018;86:565-81.
  82. Tozzi, C. Dummy's guide to batch vs. streaming. Trillium Software. 2017. http://blog.syncs ort.com/2017/07/big- data/big-data-101-batch -strea m-proce ssing /. Accessed 2 Mar 2018.
  83. Dusi M, D'Heureuse N, Huici F, Trammell B, Niccolini S. Blockmon: flexible and high performance big data stream analytics platform and its use cases. NEC Tech J. 2012;7:102-6.
  84. Puthal D, Nepal S, Ranjan R, Chen J. A dynamic prime number based efficient security mechanism for big sensing data streams. J Comput Syst Sci. 2017;83:22-42.
  85. Vanathi R, and Khadir ASA. A robust architectural framework for big data stream computing in personal healthcare real-time analytics. World Congress on Computing and Communication Technologies. 2017. p. 97-104. https ://doi. org/10.1109/wccct .2016.32.
  86. Ma K, Yang B. Stream-based live entity resolution approach with adaptive duplicate count strategy. Int J Web Grid Serv. 2017;13(3):351-73.
  87. Murphy BM, O'Driscoll C, Boylan GB, Lightbody G, Marnane WP. Stream computing for biomedical signal process- ing: A QRS complex detection case study. In: Conf proc IEEE eng med biol soc. 2015. https ://doi.org/10.1109/ embc.2015.73197 41. p. 5928-31.
  88. Apache Spark Streaming-Spark 2.1.0 Documentation. http://spark .apach e.org/strea ming.
  89. Sun H, Birke R, Bjorkqvist M, Chen LY. AccStream: accuracy-aware overload management for stream processing systems. In: IEEE conference on autonomic computing. New York: Elsevier; 2017. p. 39-48.
  90. Canbay Y, Sağıroğlu S. Big data anonymization with spark (UBMK'17). In: 2nd IEEE international conference on computer science and engineering. 2017. p. 833-8.
  91. Sahana RG, Babu BS. Converting an E-commerce prospect into a customer using streaming analytics. In: 2nd international conference on applied and theoretical computing and communication technology (iCATccT) IEEE. 2016. p. 312-7. https ://doi.org/10.1109/icatc ct.2016.79120 14.
  92. Troiano L, Vaccaro A, Vitelli MC. On-line smart grids optimization by case-based reasoning on big data. In: 2016 IEEE workshop on environmental, energy, and structural monitoring systems (EESMS), Bari, Italy, 13-14 Jun 2016.
  93. Joseph S, Jasmin EA. Stream computing framework for outage detection in smart grid. In: Proceedings of 2015 IEEE international conference on power, instrumentation, control and computing (PICC), Thrissur, India, 9-11 Dec 2015. 2015. https ://doi.org/10.1109/picc.2015.74557 44.
  94. Apache. Apache Storm. 2016. http://storm .apach e.org. Accessed 10 Oct 2018.
  95. Gokalp MO, Kocyigit A, Eren PE. A visual programming framework for distributed Internet of Things centric com- plex event processing. Comput Elect Eng. 2018;74:581-604.
  96. Maio CD, Fenza G, Loia E, Orciuoli F. Distributed online temporal fuzzy concept analysis for stream processing in smart cities. J Parallel Distrib Comput. 2017;110:31-41.
  97. Val PB, Garcia NF, Sanchez-Fernandez L, Arias-Fisteus J. Patterns for distributed real-time stream processing. IEEE Trans Parallel Distrib Syst. 2017;2(11):3243-57. https ://doi.org/10.1109/TPDS.2017.27169 29.
  98. Fernandez-Rodrigues JY, Alvarez-Garcia JA, Fisteus JA, Luaces MR, Magana VC. Benchmarking real-time vehicle data streaming models for a smart city. Inform Syst. 2017;72:62-76.
  99. Bifet A. Mining big data in real time. Informatica (Slovenia). 2013;37:15-20.
  100. Apache. Apache Samza-What is Samza? 2016. http://samza .apach e.org. Accessed 8 Oct 2018.
  101. Ananthanarayanan R, Basker V, Das S, Gupta A, Jiang H, Qiu T, Reznichenko A, Ryabkov D, Singh M, Venkataraman S. Photon: fault-tolerant and scalable joining of continuous data streams. In: Proceedings of 2013 ACM SIGMOD international conference on management of data, New York, New York, USA, 22-27 June 2013. 2013. p. 577-88.
  102. Apache Apache Aurora. 2016. http://auror a.apach e.org. Accessed 7 Oct 2018.
  103. Jiang Q, Adaikkalavan R, Chakravarthy S. MavEStream: synergistic integration of stream and event processing. In: 2007 second international conference on digital telecommunications (ICDT'07) San Jose, CA, USA. 2007. p 29-361. https ://doi.org/10.1109/icdt.2007.21 IEEE Xplore.
  104. Yang W, Da Silva A, Picard ML. Computing data quality indicators on big data streams using a CEP. In: 2015 Inter- national workshop on computational intelligence for multimedia understanding (IWCIM), Prague, Czech Republic, 29-30 Oct 2015. 2015.
  105. EsperTech. http://www.esper tech.com. Accessed 8 Oct 2018.
  106. Song M, Kim MC. RT 2 M: real-time twitter trend mining system. In: Proceedings of international conference on social intelligence and technology (SOCIETY), State College, PA, USA, 8-10 May 2013. 2013. p. 64-71.
  107. Barbieri DF, Braga D, Ceri S. Querying RDF streams with C-SPARQL. ACM Sigmoid. 2010;39(1):20-36. https ://doi. org/10.1145/18607 02.18607 05.
  108. Ren X, Khrouf H, Kazi-Aoul Z, ChabChoub Y, Cure O. On measuring performances of C-SPARQL and CQELS. CoRR, abs/1611.08269. 2016.
  109. Morales GF. SAMOA: A platform for mining big data streams. WWW 2013 Companions, Rio de Janeiro, Brazil, 13-17 May 2013. 2013.
  110. Keeney J, Fallon L, Tai W, O'Sullivan D. Towards composite semantic reasoning for real-time network management data enrichment. In: Proceedings of the 11th international conference on network and service management (CNSM), Barcelona, Spain, 9-13 Nov 2013. 2015. p. 182-6.
  111. Le-Phuoc D, Dao-Tran M, Parreira JX, Hauswirth M. A native and adaptive approach for unified processing of linked streams and linked data. In: International semantic web conference, Koblenz, Germany, 23-27 October 2011. 2011. p. 370-88.
  112. Anicic D, Rudolph S, Fodor P, Stojanovic N. Stream reasoning and complex event processing in ETALIS. Sem Web Linked Spatiotemp Data Geo-Ontolo. 2012;3(4):397-407.
  113. Apache Kylin. Kylin cube from streaming (Kafka). 2015. http://kylin .apach e.org/docs1 5/tutor ial/cube_strea ming. html. Accessed 2 Oct 2018.
  114. Splunk. Splunk Stream. 2017. https ://splun kbase .splun k.com/app/1809/. Accessed 2 Oct 2018.
  115. Shnayder V, Chen B, Lorincz K, Fulford-Jones TRF, Welsh M. Sensor networks for medical care. Technical report TR-08-05, Division of Engineering and Applied Sciences, Harvard University. 2005. https ://www.eecs.harva rd.edu/~shnay der/paper s/codeb lue-techr ept05 .pdf. Accessed 8 Oct 2018.
  116. Dror Y. Practical elastic search anomaly detection made powerful with anodot. 2017. https ://www.anodo t.com/ blog/pract ical-elast icsea rch-anoma lydet ectio n-made-owerf ul-with-anodo t/. Accessed 8 Mar 2019.
  117. Baciu G, Li C, Wang Y, Zhang X. Cloudets: Cloud-based cognition for large streaming data. In: Ge N, Lu J, Wang Y, Howard N, Chen P, Tao X, Zhang B, Zadeh LA (eds) Proceedings of IEEE 14th international conference on cognitive informatics and cognitive computing (ICCI*CC'15), Tsinghua, Univ., Beijing, China, 6-8 Jul 2015. 2015. p. 333-8.
  118. Tedeschi A, Benedetto F. A cloud-based big data sentiment analysis application for enterprises' brand monitor- ing in social media streams. In: 2015 IEEE 1st international forum on research and technologies for society and industry leveraging a better tomorrow (RTSI), Turing, Italy, 16-18 Sept 2015. 2015. p 186-91.
  119. Lavin A, Ahmad S. Evaluating real-time anomaly detection algorithms-the Numenta anomaly benchmark. In: 2015 IEEE 14th international conference on machine learning and applications (ICMLA), Miami, FL, USA, 9-11 Dec 2015. 2015. https ://doi.org/10.1109/icmla .2015.141.
  120. Chen X, Chen H, Zhang N, Huang J, Zhang W. Large-scale real-time semantic processing framework for Internet of Things. Int J Distrib Sens Netw. 2015;365372:11. https ://doi.org/10.1155/2015/36537 2.
  121. Branscombe M. How Microsoft's fast track Azure will help businesses conquer IoT. 2015. http://www.techr adar. com/news/inter net/cloud -servi ces/howmi croso ft-s-fast-track -azure -will-help-busin esses -conqu er-iot-12910 25. Accessed 8 Mar 2018.
  122. Biem A, Bouillet E, Feng H, Ranganathan A, Riabov A, Verscheure O, Koutsopoulos H, Moran C. IBM InfoSphere streams for scalable, real-time, intelligent transportation services. SIGMOID'10 Indianapolis, Indiana, USA, 6-11 Jun 2010. 2010. p. 1093-100.
  123. Akidau T, Balikov A, Bekiroglu K, Chernyak S, Haberman J, Lax R, McVeety S, Mills D, Nordstrom P, Whittle S. Mill- Wheel: fault-tolerant stream processing at internet scale. Proc VLDB Endowment. 2013;6(11):1033-44.
  124. Blount M, Ebling MR, Eklund JM, James AG, McGregor C, Percival N, Smith KP, Sow D. Real-time analysis for inten- sive care: development and deployment of the artemis analytic system. IEEE Eng Med Biol Mag. 2010;29(2):110-8. https ://doi.org/10.1109/MEMB.2010.93645 4.
  125. Introducing WSO2 Data Analytics Server. 2015. https ://docs.wso2.com/displ ay/DAS30 0/Intro ducin g+DAS. Accessed 8 Mar 2019.
  126. Ali M, Chandramouli B, Goldstein J, Schindlauer R. The extensibility framework in Microsoft StreamInsight. In: Pro- ceedings of the 2011 IEEE 27th international conference on data engineering (ICDE), Washington, DC, USA, 11-16 Apr 2011. 2011. p. 1242-53.
  127. TIBCO StreamBase Documentation. https ://docs.tibco .com. Accessed 8 Mar 2018.
  128. Wilkes S. Making in-memory computing enterprise-grade-overview-Striim. 2016. http://www.strii m.com/ blog/2016/06/makin g-in-memor ycomp uting -enter prise -grade -overv iew/ Accessed 8 Mar 2019.
  129. Kyvos Insights. Kyvos insights 2018. 2018. https ://www.kyvos insig hts.com/. Accessed 1 Feb 2018.
  130. AtScale. AtScale overview (version 4.1). 2017. http://info.atsca le.com/atsca le-overv iew. Accessed 2 Feb 2018.
  131. AtScale. AtScale. 2018. http://atsca le.com/produ ct/. Accessed 2 Feb 2018.
  132. Gedik B, Andrade H, Wu K, Yu PS, Doo M. Spade: the S declarative stream processing engine. In: 2008 ACM SIG- MOID international conference on management of data, Vancouver, Canada, 9-12 Jun 2008. 2008. p. 1123-34.
  133. Mimic, II. http://physi onet.org/physi obank /datab ase/mimic 2db/. Accessed 4 Nov 2016.
  134. Wu Z, Zou M. An incremental community detection method for social tagging systems using locality sensitive hashing. Neural Netw. 2014;58:14-28. https ://doi.org/10.1016/j.neune t.2014.05.019.
  135. O'Callaghan L, Mishra N, Meyerson A, Guha S, Motwani R. Streaming-data algorithms for high-quality clustering. In: Proceedings of IEEE international conference on data engineering, San Jose, CA, USA, 26 Feb-1 Mar 2002. 2002. p. 685-94.
  136. Aggarwal CC, Han JW, Wang JY. A framework for clustering evolving data streams. In: Proceedings of the 29th VLDB conference, vol. 29, Berlin, Germany, 9-12 Sep 2003. 2003. p. 81-92.
  137. Backhoff O, Ntoutsi E. Scalable online-offline stream clustering in apache spark. In: 2016 IEEE 16th international conference on data mining workshops (ICDMW), Barcelona, Spain, 12-15 Dec 2016. 2016. p. 37-44. https ://doi. org/10.1109/icdmw .2016.0014.
  138. Aggarwal CC, Han J, Wang J, Yu PS. A framework for projected clustering of high dimensional data streams. In: Proceedings of the 30th international conference on very large data bases, 30, Toronto, Canada, 31 Aug-3 Sep 2004. 2004. p. 852-63.
  139. Cao F, Ester M, Qian W, Zhou A. Density-based clustering over an evolving data stream with noise. In: 2006 SIAM conference on data mining. 2006. p. 328-39.
  140. Chen Y, Tu L. Density-based clustering for real-time stream data. In: Proceedings of the 13th ACM SIGKDD interna- tional conference on knowledge discovery and data mining, San Jose, CA, USA, 12-15 Aug 2007. 2007. p. 133-42.
  141. Zhu WH, Yin J, Xie YH. Arbitrary shape cluster algorithm for clustering data stream. J Softw. 2006;17(3):379-87.
  142. Khalilian M, Mustapha N, Sulaiman N. Data stream clustering by divide and conquer approach based on vector model. J Big Data. 2016;3:1. https ://doi.org/10.1186/s4053 7-015-0036-x.
  143. Dai DB, Zhao G, Sun SL. Effective clustering algorithm for probabilistic data stream. J Softw. 2009;20(5):1313-28.
  144. Ding S, Zhang J, Jia H, Qian J. An adaptive density data stream clustering algorithm. Cogn Comput. 2016;8(1):1-9. https ://doi.org/10.1007/s1255 9-015-9342-z.
  145. Choi D, Song S, Kim B, Bae I. Processing moving objects and traffic events based on spark streaming. In: Proceed- ings of the 8th international conference on disaster recovery and business continuity (DRBC), Jeju, South Korea, 25-28 Nov 2015. 2015. p. 4-7.
  146. Chen XJ, Ke J. Fast processing of conversion time data flow in cloud computing via weighted FPtree mining algorithms. In: 2015 IEEE 12th intl conf on ubiquitous intelligence and computing and 2015 IEEE 12th intl conf on autonomic and trusted computing and 2015 IEEE 15th intl conf on scalable computing and communications and its associated workshops (UIC-ATC-ScalCom), Beijing, China, 10-14 Aug 2015. 2015.
  147. Li T, Wang L. Key technology of online auditing data stream processing. In: 2015 IEEE 12th intl conf on ubiquitous intelligence and computing and 2015 IEEE 12th intl conf on autonomic and trusted computing and 2015 IEEE 15th intl conf on scalable computing and communications and its associated workshops (UIC-ATC-ScalCom), Beijing, China, 10-14 Aug 2015. 2015.
  148. Xiao F, Aritsugi M, Wang Q, Zhang R. Efficient processing of multiple nested event pattern queries over multi- dimensional event streams based on a triaxial hierarchical model. Artif Intell Med. 2016;72(1):56-71. https ://doi. org/10.1016/j.artme d.2016.08.002.
  149. Wang Z, Zhao Z, Weng S, Zhang C. Incremental multiple instance outlier detection. Neural Comput Appl. 2015;26:957-68. https ://doi.org/10.1007/s0052 1-014-1750-6.
  150. Ruiz E, Casillas J. Adaptive fuzzy partitions for evolving association rules in big data stream. Int J Approx Reasoning. 2018;93:463-86.
  151. Jadhav SA, Kosbatwar SP. Concept-adapting very fast decision tree with misclassification error. Int J Adv Res Com- put Eng Technol (IJARCET). 2016;5(6):1763-7.