The lunar surface as a recorder of astrophysical processes
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
https://doi.org/10.1098/RSTA.2019.0562Abstract
The lunar surface has been exposed to the space environment for billions of years and during this time has accumulated records of a wide range of astrophysical phenomena. These include solar wind particles and the cosmogenic products of solar particle events which preserve a record of the past evolution of the Sun, and cosmogenic nuclides produced by high-energy galactic cosmic rays which potentially record the galactic environment of the Solar System through time. The lunar surface may also have accreted material from the local interstellar medium, including supernova ejecta and material from interstellar clouds encountered by the Solar System in the past. Owing to the Moon's relatively low level of geological activity, absence of an atmosphere, and, for much of its history, lack of a magnetic field, the lunar surface is ideally suited to collect these astronomical records. Moreover, the Moon exhibits geological processes able to bury and thus both preserve and ‘time-stamp'...
References (128)
- Spudis PD. 1996 The once and future moon. Washington, DC: Smithsonian Institution Press.
- Crawford IA, Anand M, Cockell CS, Falcke H, Green DA, Jaumann R, Wieczorek MA. 2012 Back to the Moon: the scientific rationale for resuming lunar surface exploration. Planet. Space Sci. 74, 3-14. (doi:10.1016/j.pss.2012.06.002)
- Crotts A. 2014 The new moon: water, exploration and future habitation. Cambridge, UK: Cambridge University Press.
- Tartèse R, Anand M, Gattacceca J, Joy KH, Mortimer JI, Pernet-Fisher JF, Russell S, Snape JF, Weiss BP. 2019 Constraining the evolutionary history of the Moon and the inner Solar System: a case for new returned lunar samples. Space Sci. Rev. 215, 54. (doi:10.1007%2Fs11214-019-0622-x)
- McKay DS, Heiken GH, Basu A, Blanford G, Simon S, Reedy R, French BM, Papike J. 1991 The lunar regolith. In The lunar sourcebook: a user's guide to the moon (eds GH Heiken, D Vaniman, BM French), pp. 285-356. Cambridge, UK: Cambridge University Press.
- Gough DO. 1981 Solar interior structure and luminosity variations. Sol. Phys. 74, 21-34. (doi:10.1007/BF00151270)
- Guzik JA, Neuforge-Verheecke C, Young AC, Epstein RI, Poulin FM, Schissel JR. 2001 Standard and non-standard solar models. Sol. Phys. 200, 305-321. (10.1023/A:1010398627973)
- Güdel M. 2007 The sun in time: activity and environment. Living Rev. Sol. Phys. 4, 3. (doi:10.12942/lrsp-2007-3)
- O'Fionnagáin D, Vidotto AA. 2018 The solar wind in time: a change in the behaviour of older winds? Mon. Not. R. Astron. Soc. 476, 2465-2475. (doi:10.1093/mnras/sty394)
- Airapetian VS, Glocer A, Gronoff G, Hébrard E, Danchi W. 2016 Prebiotic chemistry and atmospheric warming of early Earth by an active young Sun. Nat. Geosci. 9, 452-455. (doi:10.1038/ngeo2719)
- Cohen O, Drake JJ, Kóta J. 2012 The cosmic-ray intensity near the Archean Earth. Astrophys. J. 760, 85. (doi:10.1088/0004-637X/760/1/85)
- Sagan C, Mullen G. 1972 Earth and Mars: evolution of atmospheres and surface temperatures. Science 177, 52-56. (doi:10.1126/science.177.4043.52)
- Feulner G. 2012 The faint young Sun problem. Rev. Geophys. 50, RG2006. (doi:10.1029/ 2011RG000375)
- Graedel TE, Sackmann I-J, Boothroyd AI. 1991 Early solar mass loss: a potential solution to the weak sun paradox. Geophys. Res. Lett. 18, 1881-1884. (doi:10.1029/91GL02314)
- Whitmire DP, Doyle LR, Reynolds RT, Matese JJ. 1995 A slightly more massive young Sun as an explanation for warm temperatures on early Mars. J. Geophys. Res. 100, 5457-5464. (doi:10.1029/94JE03080)
- Gaidos EJ, Güdel M, Blake GA. 2000 The Faint Young Sun Paradox: an observational test of an alternative solar model. Geophys. Res. Lett. 27, 501-503. (doi:10.1029/1999GL010740)
- Reedy RC. 1980 Lunar radionuclide records of average solar-cosmic-ray fluxes over the last ten million years. In The ancient Sun: fossil record in the earth, moon and meteorites (eds RO Pepin, JA Eddy, RB Merrill), pp. 365-386. New York, NY: Pergamon Press.
- Reames DV. 2013 The two sources of solar energetic particles. Space Sci. Rev. 175, 53-92. (doi:10.1007/s11214-013-9958-9)
- Schmelz JT, Reames DV, Von Steiger R, Basu S. 2012 Composition of the solar corona, solar wind, and solar energetic particles. Astrophy. J. 755, 33. (doi:10.1088/0004-637X/755/1/33)
- Lucey PG et al. 2006 Understanding the lunar surface and space-Moon interaction. Rev. Min. Geochem. 60, 82-219. (doi:10.2138/rmg.2006.60.2)
- Kerridge JF. 1975 Solar nitrogen: evidence for a secular change in the ratio of nitrogen-15 to nitrogen-14. Science 188, 162-164. (doi:10.1126/science.188.4184.162)
- Crozaz G, Walker R M, Zinner E, Morrison DA, Poupeau G. 1977 The record of solar and galactic radiations in the ancient lunar regolith and their implications for the early history of the Sun and Moon. Phil. Trans. R. Soc. Lond. A 285, 587-592. (doi:10.1098/rsta.1977.0103)
- Wieler R, Kehm K, Meshik AP, Hohenberg CM. 1996 Secular changes in the xenon and krypton abundances in the solar wind recorded in single lunar grains. Nature 384, 46-49. (doi:10.1038/384046a0)
- Wieler R. 2016 Do lunar and meteoritic archives record temporal variations in the composition of solar wind noble gases and nitrogen? A reassessment in the light of Genesis data. Geochemistry 76, 463-480. (doi:10.1016/j.chemer.2016.06.001)
- Pepin RO, Becker RH, Schlutter DJ. 1999 Irradiation records in regolith materials. I: isotopic compositions of solar-wind neon and argon in single lunar mineral grains. Geochim. Cosmochim. Acta 63, 2145-2162. (doi:10.1016/S0016-7037(99)00002-2)
- Nishiizumi K, Arnold R, Klein J, Middleton R, Goswami JN. 1985 Cosmogenic nuclides in 15011 rocklets. In 16th Lunar and Planetary Science Conf., Houston, TX, March 1985, pp. 620-621. (http://articles.adsabs.harvard.edu//full/1985LPI....16..620N/0000621.000.html)
- Jull AJT, Pillinger CT. 1977 Effects of sputtering on solar wind element accumulation. Proc. Lunar Planet. Sci. Conf. 8, 3817-3833.
- Housley RM. 1980 Toward a model of grain surface exposure in planetary regoliths. In The ancient sun: fossil record in the earth, moon and meteorites (eds RO Pepin, JA Eddy, RB Merrill), pp. 401-410. New York, NY: Pergamon Press.
- Levine J, Renne PR, Muller RA. 2007 Solar and cosmogenic argon in dated lunar impact spherules. Geochim. Cosmochim. Acta 71, 1624-1635. (doi:10.1016/j.gca.2006.11.034)
- Baker D, Brooks DH, van Driel-Gesztelyi L, James AW, Démoulin P, Long DM, Warren HP, Williams DR. 2018 Coronal elemental abundances in solar emerging flux regions. Astrophys. J. 856, 71. (doi:10.3847/1538-4357/aaadb0)
- Saxena P, Killen RM, Airapetian V, Petro NE, Curran NM, Mandell AM. 2019 Was the Sun a slow rotator? Sodium and potassium constraints from the lunar regolith. Astrophys. J. 876, L16. (doi:10.3847/2041-8213/ab18fb)
- Wieler R. 1998 The solar noble gas record in lunar samples and meteorites. Space Sci. Rev. 85, 303-314. (doi:10.1023/A:1005166904225)
- Curran NM, Nottingham M, Alexander L, Crawford IA, Füri E, Joy KH. 2020 A database of noble gases in lunar samples in preparation for mass spectrometry on the Moon. Planet. Space Sci. 182, 104823. (doi:10.1016/j.pss.2019.104823)
- Pillinger CT. 1979 Solar-wind exposure effects in lunar soil. Rep. Prog. Phys. 42, 897-968.
- Palma RL, Becker RH, Pepin FO, Schlutter DJ. 2002 Irradiation records in regolith materials II: solar wind and solar energetic particle components in helium, neon, and argon extracted from single lunar mineral grains and from the Kapoeta howardite by stepwise pulse heating. Geochim. Cosmochim. Acta 66, 2929-2958. (doi:10.1016/S0016-7037(02)00 853-0)
- Grimberg A, Baur H, Bochsler P, Bühler F, Burnett DS, Hays CC, Heber VS, Jurewicz AJG, Wieler R. 2006 Solar wind neon from genesis: implications for the lunar noble gas record. Science 314, 1133-1135. (doi:10.1126/science.1133568)
- Wieler R, Baur H, Signer P. 1986 Noble gases from solar energetic particles revealed by closed system stepwise etching of lunar soil minerals. Geochim. Cosmochim. Acta 50, 1997-2017. (doi:10.1016/0016-7037(86)90255-3)
- Hashizume K, Chaussidon M, Marty B, Robert F. 2000 Solar wind record on the Moon: deciphering presolar from planetary nitrogen. Science 290, 1142-1145. (doi:10.1126/science. 290.5494.1142)
- Heiken GH, Vaniman D, French BM (eds). 1991 The lunar sourcebook: a user's guide to the moon. Cambridge, UK: Cambridge University Press.
- Fagan AL, Joy KH, Bogard DD, Kring DA. 2014 Ages of globally distributed lunar paleoregoliths and soils from 3.9 Ga to the present. Earth Moon Planets 112, 59-71. (doi:10.1007/s11038-014-9437-7)
- Kovaltsov GA, Usoskin IG. 2014 Occurrence probability of large solar energetic particle events: assessment from data on cosmogenic radionuclides in lunar rocks. Sol. Phys. 289, 211-220. (doi:10.1007/s11207-013-0333-5)
- Miyahara H, Wen G, Cahalan RF, Ohmura A. 2008 Deriving historical total solar irradiance from lunar borehole temperatures. Geophys. Res. Lett. 35, L02716. (doi:10.1029/ 2007GL032171)
- Pollack HN, Huang S. 2000 Climate reconstruction from subsurface temperatures. Ann. Rev. Earth Planet. Sci. 28, 339-365. (doi:10.1146/annurev.earth.28.1.339)
- Vallée JP. 2017 Recent advances in the determination of some Galactic constants in the Milky Way. Astrophys. Space Sci. 262, 79. (doi:10.1007/s10509-017-3058-3)
- Vallée JP. 2017 A guided map to the spiral arms in the galactic disk of the Milky Way. Astr. Rev. 13, 113-146. (doi:10.1080/21672857.2017.1379459)
- Raup DM, Sepkoski JJ. 1984 Periodicity of extinctions in the geologic past. Proc. Natl Acad. Sci. USA 81, 801-805. (doi:10.1073/pnas.81.3.801)
- Overholt AC, Melott AL, Pohl M. 2009 Testing the link between terrestrial climate change and galactic spiral arm transit. Astrophys. J. 705, L101-L103. (doi:10.1088/0004-637X/ 705/2/L101)
- Filipovic MD, Horner J, Crawford EJ, Tothill NFH, White GL. 2013 Mass extinction and the structure of the Milky Way. Serb. Astron. J. 187, 43-52. (doi:10.2298/SAJ130819005F)
- Gillman MP, Erenler HE, Sutton PJ. 2019 Mapping the location of terrestrial impacts and extinctions onto the spiral arm structure of the Milky Way. Int. J. Astrobiol. 18, 323-328. (doi:10.1017/S1473550418000125)
- Crawford IA, Fagents SA, Joy KH, Rumpf ME. 2010 Lunar palaeoregolith deposits as recorders of the galactic environment of the Solar System and implications for astrobiology. Earth Moon Planets 107, 75-85. (doi:10.1007/s11038-010-9358-z)
- Crawford IA. 2016 The Moon as a recorder of nearby supernovae. In Handbook of supernovae (eds AW Alsabti, P Murdin), pp. 2507-2522. Berlin, Germany: Springer.
- Forman MA, Schaeffer OA. 1979 Cosmic ray intensity over long time scales. Rev. Geophys. Space Phys. 17, 552-560. (doi:10.1029/RG017i004p00552)
- Shaviv NJ. 2006 Long-term variations in the galactic environment of the Sun. In Solar journey: the significance of our galactic environment for the heliosphere (ed. PC Frisch), pp. 99-131. Dordrecht, The Netherlands: Springer.
- Scherer K et al. 2006 Interstellar-terrestrial relations: variable cosmic environments, the dynamic heliosphere, and their imprints on terrestrial archives and climate. Space Sci. Rev. 127, 327-465. (doi:10.1007/s11214-006-9126-6)
- Leitch EM, Vasisht G. 1998 Mass extinctions and the sun's encounters with spiral arms. New Astron. 3, 51-56. (doi:10.1016/S1384-1076(97)00044-4)
- Shaviv NJ. 2003 The spiral structure of the Milky Way, cosmic rays, and ice age epochs on Earth. New Astron. 8, 39-77. (doi:10.1016/S1384-1076(02)00193-8)
- Gies DR, Helsel JW. 2005 Ice age epochs and the Sun's path through the Galaxy. Astrophys. J. 626, 844-848. (doi:10.1086/430250)
- Melott AL, Thomas BC, Kachelrieß M, Semikoz DV, Overholt AC. 2017 A supernova at 50 pc: effects on the Earth's atmosphere and biota. Astrophys. J. 840, 105. (doi:10.3847/1538-4357/
- Crozaz G. 1980 Solar flare and galactic cosmic ray tracks in lunar samples and meteorite: what they tell us about the ancient Sun. In The ancient sun: fossil record in the earth, moon and meteorites (eds RO Pepin, JA Eddy, RB Merrill), pp. 331-346. New York, NY: Pergamon Press.
- Wieler R. 2002 Cosmic-ray-produced noble gases in meteorites. Rev. Mineral. Geochem. 47, 125-170. (doi:10.2138/rmg.2002.47.5)
- Leya I, Neumann S, Wieler R, Michel R. 2001 The production of cosmogenic nuclides by GCR-particles for 2 pi exposure geometries. Meteorit. Planet. Sci. 36, 1547-1561. (doi:10.1111/j.1945-5100.2001.tb01845.x)
- Wieler R, Beer J, Leya I. 2013 The galactic cosmic ray intensity over the past 10 6 -10 9 years as recorded by cosmogenic nuclides in meteorites and terrestrial samples. Space Sci. Rev. 176, 351-363. (doi:10.1007/s11214-011-9769-9)
- Smith T, Cook DL, Merchel S, Pavetich S, Rugel G, Scharf A, Leya I. 2019 The constancy of galactic cosmic rays as recorded by cosmogenic nuclides in iron meteorites. Meteorit. Planet. Sci. 54, 2951-2976. (doi:10.1111/maps.13417)
- Lorenzetti S, Busemann H, Eugster O. 2005 Regolith history of lunar meteorites. Meteorit. Planet. Sci. 40, 315-327. (doi:10.1111/j.1945-5100.2005.tb00383.x)
- Baum S, Edwards TDP, Kavanagh BJ, Stengel P, Drukier AK, Freese K, Górski M, Weniger C. 2020 Paleodetectors for galactic supernova neutrinos. Phys. Rev. D 101, 103017. (doi:10.1103/PhysRevD.101.103017)
- Crawford IA. 2011 Project Icarus: a review of local interstellar medium properties of relevance for space missions to the nearest stars. Acta Astronaut. 68, 691-699. (doi:10.1016/j.actaastro.2010.10.016)
- Pavlov AA, Toon OB, Pavlov AK, Bally J, Pollard D. 2005 Passing through a giant molecular cloud: ''snowball'' glaciations produced by interstellar dust. Geophys. Res. Lett. 32, L03705. (doi:10.1029/2004GL021890)
- Yeghikyan A, Fahr H. 2006 Accretion of interstellar material into the heliosphere and onto Earth. In Solar journey: the significance of our galactic environment for the heliosphere and earth (ed. PC Frisch), pp. 317-348. Dordrecht, the Netherlands: Springer.
- Yabushita S, Allen AJ. 1989 On the effect of accreted interstellar matter on the terrestrial environment. Mon. Not. R. Astron. Soc. 238, 1465-1478. (doi:10.1093/mnras/238.4.1465)
- Kokaia G, Davies MB. 2019 Stellar encounters with giant molecular clouds. Mon. Not. R. Astron. Soc. 489, 5165-5180. (doi:10.1093/mnras/stz813)
- Talbot RJ, Nreman MJ. 1977 Encounters between stars and dense interstellar clouds. Astrophys. J. Suppl. 34, 295-308. (doi:10.1086/190452)
- Smith DS, Scalo JM. 2009 Habitable zones exposed: astrosphere collapse frequency as a function of stellar mass. Astrobiology 9, 673-681. (doi:10.1089/ast.2009.0337)
- Wimmer-Schweingruber RF, Bochsler P. 2001 Lunar soils: a long-term archive for the galactic environment of the heliosphere? AIP Conf. Proc. 598, 399-404. (doi:10.1063/1.1434029)
- Colaprete A et al. 2010 Detection of water in the LCROSS ejecta plume. Science 330, 463-468. (doi:10.1126/science.1186986)
- Paige DA et al. 2010 Diviner Lunar Radiometer observations of cold traps in the Moon's south polar region. Science 330, 479-482. (doi:10.1126/science.1187726)
- Knie K, Korschinek G, Faestermann T, Wallner C, Scholten J, Hillebrandt W. 1999 Indication for supernova produced 60 Fe activity on Earth. Phys. Rev. Lett. 83, 18-21. (doi:10.1103/PhysRevLett.83.18)
- Fields BD, Hochmuth KA, Ellis J. 2005 Deep-ocean crusts as telescopes: using live radioisotopes to probe supernova nucleosynthesis. Astrophys. J. 621, 902-907. (doi:10.1086/427797)
- Athanassiadou T, Fields BD. 2011 Penetration of nearby supernova dust in the inner Solar System. New Astron. 16, 229-241. (doi:10.1016/j.newast.2010.09.007) royalsocietypublishing.org/journal/rsta Phil. Trans. R. Soc. A 379: 20190562 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
- Fry BJ, Fields BD, Ellis JR. 2015 Astrophysical shrapnel: discriminating among near- Earth stellar explosion sources of live radioactive isotopes. Astrophys. J. 800, 71. (doi:10.1088/0004-637X/800/1/71)
- Knie K, Korschinek G, Faestermann T, Dorfi EA, Rugel G, Wallner A. 2004 60 Fe anomaly in a deep-sea manganese crust and implications for a nearby supernova source. Phys. Rev. Lett. 93, 171103. (doi:10.1103/physrevlett.93.171103)
- Wallner A et al. 2016 Recent near-Earth supernovae probed by global deposition of interstellar radioactive 60 Fe. Nature 532, 69-72. (doi:10.1038/nature17196)
- Fields B et al. 2019 Near-Earth supernova explosions: evidence, implications, and opportunities. Decadal Survey on Astronomy and Astrophysics, science white papers, no. 410. Bull. Am. Astron. Soc. 51, 410.
- Cook DL et al. 2009 60Fe, 10Be, and 26Al in Lunar Cores 12025/8 and 60006/7: search for a nearby supernova. In 40th Lunar and Planetary Science Conf., Woodlands, TX, 23-27 March 2009, abstract no. 1129. (https://www.lpi.usra.edu/meetings/lpsc2009/pdf/1129.pdf)
- Fimiani L et al. 2016 Interstellar 60 Fe on the surface of the Moon. Phys. Rev. Lett. 116, 151104. (doi:10.1103/PhysRevLett.116.151104)
- Siraj A, Loeb A. 2020 Impacts of dust grains accelerated by supernovae on the Moon. Astrophys. J. 895, L42. (doi:10.3847/2041-8213/ab93d5)
- Drukier AK, Baum S, Freese K, Górski M, Stengel P. 2019 Paleo-detectors: searching for dark matter with ancient minerals. Phys. Rev. D 99, 043014. (doi:10.1103/PhysRevD.99.043014)
- Torbett MV. 1986 Dynamical influence of galactic tides and molecular clouds on the Oort cloud of comets. In The galaxy and the Solar System (eds R Smoluchowski, JN Bahcall, MS Matthews), pp. 147-172. Tucson, AZ: University of Arizona Press.
- Matese JJ, Whitman PG, Innanen KA, Valtonen MJ. 1995 Periodic modulation of the Oort cloud comet flux by the adiabatically changing galactic tide. Icarus 116, 255-268. (doi:10.1006/icar.1995.1124)
- Rampino MR. 2015 Disc dark matter in the Galaxy and potential cycles of extraterrestrial impacts, mass extinctions and geological events. Mon. Not. R. Astron. Soc. 448, 1816-1820. (doi:10.1093/mnras/stu2708)
- Schmieder M, Kring DA. 2020 Earth's impact events through geologic time: a list of recommended ages for terrestrial impact structures and deposits. Astrobiology 20, 91-141. (doi:10.1089/ast.2019.2085)
- Stöffler D, Ryder G, Ivanov BA, Artemieva NA, Cintala MA, Grieve RAF. 2006 Cratering history and lunar chronology. Rev. Min. Geochem. 60, 519-596. (doi:10.2138/rmg.2006.60.05)
- Neukum G, Ivanov BA, Hartmann WK. 2001 Cratering records in the inner solar system in relation to the lunar reference system. Space Sci. Rev. 96, 55-86. (doi:10.1023/ A:1011989004263)
- Weiss BP, Tikoo SM. 2014 The lunar dynamo. Science 346, 1246753. (doi:10.1126/ science.1246753)
- Mighani S, Wang H, Shuster DL, Borlina CS, Nichols CIO, Weiss BP. 2020 The end of the lunar dynamo. Sci. Adv. 6, eaax0883. (doi:10.1126/sciadv.aax0883)
- Needham DH, Kring DA. 2017 Lunar volcanism produced a transient atmosphere around the ancient Moon. Earth Planet. Sci. Lett. 478, 175-178. (doi:10.1016/j.epsl.2017.09.002)
- Wilson L, Head JW, Deutsch AN. 2019 Volcanically-induced transient atmospheres on the Moon: assessment of duration and significance. In 50th Lunar and Planetary Science Conf ., Woodlands, TX, 18-22 March 2019, abstract no. 1343. (https://www.hou.usra.edu/meetings/ lpsc2019/pdf/1343.pdf)
- Snape JF, Nemchin AA, Whitehouse MJ, Merle RE, Hopkinson T, Anand M. 2019 The timing of basaltic volcanism at the Apollo landing sites. Geochim. Cosmochim. Acta 266, 29-53. (doi:10.1016/j.gca.2019.07.042)
- Taylor GJ, Warren P, Ryder G, Delano J, Pieters C, Lofgren G. 1991 Lunar Rocks. In The lunar sourcebook: a user's guide to the moon (eds GH Heiken, D Vaniman, BM French), pp. 183-284. Cambridge, UK: Cambridge University Press.
- Robinson MS, Ashley JW, Boyd AK, Wagner RV, Speyerer EJ, Ray Hawke B, Hiesinger H, van der Bogert CH. 2012 Confirmation of sublunarean voids and thin layering in mare deposits. Planet. Space Sci. 69, 18-27. (doi:10.1016/j.pss.2012.05.008)
- Hiesinger H, Head JW, Wolf U, Jaumann R, Neukum G. 2011 Ages and stratigraphy of lunar mare basalts: a synthesis. Geol. Soc. Am. Special Paper No. 477, 1-51. (doi:doi.org/ 10.1130/2011.2477(01)
- Braden SE, Stopar JD, Robinson MS, Lawrence SJ, van der Bogert CH, Hiesinger H. 2014 Evidence for basaltic volcanism on the Moon within the past 100 million years. Nat. Geosci. 7, 787-791. (doi:10.1038/ngeo2252)
- Qiao L, Head J, Wilson L, Long X, Kreslavsky M, Dufek J. 2017 Ina pit crater on the Moon: extrusion of waning-stage lava lake magmatic foam results in extremely young crater retention ages. Geology 45, 455-458. (doi:10.1130/G38594.1)
- Rumpf ME, Fagents SA, Crawford IA, Joy KH. 2013 Numerical modeling of lava-regolith heat transfer on the Moon and implications for the preservation of implanted volatiles. J. Geophy. Res. Planets 118, 382-397. (doi:10.1029/2012JE004131)
- Hörz F, Grieve RAF, Heiken GH, Spudis P, Binder A. 1991 Lunar surface processes. In The lunar sourcebook: a user's guide to the moon (eds GH Heiken, D Vaniman, BM French), pp. 61-120. Cambridge, UK: Cambridge University Press.
- Xie M, Xiao Z, Xu A. 2018 Modeling the growth of regolith on the Moon: implication for the evolution of crater and impactor populations. In 49th Lunar and Planetary Science Conf ., Woodlands, TX, 19-23 March 2018, abstract no. 1992. (https://www.hou.usra.edu/meetings/ lpsc2018/pdf/1992.pdf)
- Head JW, Wilson L. 2019 Rethinking lunar mare basalt regolith formation: new concepts of lava flow protolith and evolution of regolith thickness and internal structure. In 50th Lunar and Planetary Science Conf ., Woodlands, TX, 18-22 March 2019, abstract no. 2532. (https:// www.hou.usra.edu/meetings/lpsc2019/pdf/2532.pdf)
- Gaddis LR, Staid MI, Tyburczy JA, Hawke BR, Petro N. 2003 Compositional analyses of lunar pyroclastic deposits. Icarus 161, 262-280. (doi:10.1016/S0019-1035(02)00036-2)
- Head JW, Wilson L. 2017 Generation, ascent and eruption of magma on the Moon: new insights into source depths, magma supply, intrusions and effusive/explosive eruptions (part 2: observations). Icarus 283, 176-223. (doi:10.1016/j.icarus.2015.12.039)
- Huff AE, Hagerty JJ, Skinner JA, Fortezzo CM, Gaither TA. 2015 Excavation depths of small diameter craters on a pyroclastic deposit near northern Rimae Bode, the Moon. In 46th Lunar and Planetary Science Conf., Woodlands, TX, 16-20 March 2015, abstract no. 2386. (https:// www.hou.usra.edu/meetings/lpsc2015/pdf/2386.pdf)
- McKay DS. 2009 Do lunar pyroclastic deposits contain the secrets of the Solar System? In Lunar Reconnaissance Orbiter Science Targeting Meeting, Tempe, Arizona, 9-11 June 2009, abstract no. 6014. (https://www.lpi.usra.edu/meetings/lro2009/pdf/6014.pdf)
- Cohen BA, Swindle TD, Kring DA. 2005 Geochemistry and 40Ar-39Ar geochronology of impact-melt clasts in feldspathic lunar meteorites: implications for lunar bombardment history. Meteorit. Planet. Sci. 40, 755-777. (doi:10.1111/j.1945-5100.2005.tb00978.x)
- Zellner NEB, Delano JW. 2015 40 Ar/ 39 Ar ages of lunar impact glasses: relationships among Ar diffusivity, chemical composition, shape, and size. Geochim. Cosmochim. Acta 161, 203-218. (doi:10.1016/j.gca.2015.04.013)
- Gombosi DJ, Baldwin SL, Watson EB, Swindle TD, Delano JW, Roberge WG. 2015 Argon diffusion in Apollo 16 impact glass spherules: implications for 40 Ar/ 39 Ar dating of lunar impact events. Geochim. Cosmochim. Acta 148, 251-268. (doi:10.1016/j.gca.2014.09.031)
- Fernandes V, Artemieva N. 2012 Impact ejecta temperature profile on the Moon: what are the effects on the Ar-Ar dating method? In 43rd Lunar and Planetary Science Conf., Woodlands, TX, 19-23 March 2012, abstract no. 1367. (https://www.lpi.usra.edu/meetings/lpsc2012/pdf/ 1367.pdf)
- Melosh HJ. 1989 Impact cratering: a geologic process. Oxford, UK: Oxford University Press.
- Weider SZ, Crawford IA, Joy KH. 2010 Individual lava flow thicknesses in Oceanus Procellarum and Mare Serenitatis determined from Clementine multi-spectral data. Icarus 209, 323-336. (doi:10.1016/j.icarus.2010.05.010)
- Ono T, Kumamoto A, Nakagawa H, Yamaguchi Y, Oshigami S, Yamaji A, Kobayashi T, Kasahara Y, Oya H. 2009 Lunar Radar Sounder observations of subsurface layers under the nearside maria of the Moon. Science 323, 90-92. (doi:10.1126/science.1165988)
- Fa W, Zhu M-H, Liu T, Plescia JB. 2015 Regolith stratigraphy at the Chang'E-3 landing site as seen by lunar penetrating radar. Geophys. Res. Lett. 42, 179-187. (doi:10.1002/2015GL066537) royalsocietypublishing.org/journal/rsta Phil. Trans. R. Soc. A 379: 20190562 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
- Li C et al. 2020 The Moon's farside shallow subsurface structure unveiled by Chang'E-4 lunar penetrating radar. Sci. Adv. 6, eaay6898. (doi:10.1126/sciadv.aay6898)
- Cooper MR, Kovach RL, Watkins JS. 1974 Lunar near-surface structure. Rev. Geophys. Space Phys. 12, 291-308. (doi:10.1029/RG012i003p00291)
- Kerber L et al. 2020 Moon Diver: journey into the ancient lavas of the Moon. In 51st Lunar and Planetary Science Conf., Woodlands, TX, 16-21 March 2020, abstract no. 1857. (https://www. hou.usra.edu/meetings/lpsc2020/pdf/1857.pdf)
- Zacny K et al. 2008 Drilling systems for extraterrestrial subsurface exploration. Astrobiology 8, 665-706. (10.1089/ast.2007.0179)
- Zacny K et al. 2013 LunarVader: development and testing of lunar drill in vacuum chamber and in lunar analog site of Antarctica. J. Aerosp. Eng. 26, 74-86. (doi:10.1061/(ASCE)AS.1943-5525.0000212)
- Shearer C et al. 2007 Analysis of lunar sample mass capability for the lunar exploration architecture. White paper by the NASA Curation and Analysis Planning Team for Extraterrestrial Materials (CAPTEM) (http://www.lpi.usra.edu/lunar/strategies/captem_ sample_return.pdf)
- Woerner J, Foing B. 2016 The 'Moon Village' concept and initiative. In Annual Meeting of the Lunar Exploration Analysis Group, 1-3 November 2016, Columbia, MD, abstract no. 5084. (https://www.hou.usra.edu/meetings/leag2016/pdf/5084.pdf)
- Taylor GJ. 1985 The need for a lunar base: answering basic questions about planetary science'. In Lunar bases and space activities of the 21st century (ed. WW Mendell), pp. 189-197. Houston, TX: Lunar and Planetary Institute.
- Ehrenfreund P et al. 2012 Toward a global space exploration program: a stepping stone approach. Adv. Space Res. 49, 2-48. (doi:10.1016/j.asr.2011.09.014)
- McKay C. 2013 The case for a NASA research base on the Moon. New Space 1, 162-166. (doi:10.1089/space.2013.0018)