Abstract
We review some of the main achievements of the orbit method, when applied to Poisson– Lie groups and Poisson homogeneous spaces or spaces with an invariant Poisson structure. We consider C∗-algebra quantization obtained through groupoid techniques, and we try to put the results obtained in algebraic or representation theoretical contexts in relation with groupoid quantization.
FAQs
AI
What are the practical benefits of applying the quantum orbit method?
The quantum orbit method provides a systematic framework for constructing unitary representations from Poisson manifolds, particularly in nilpotent cases. This was highlighted in the quantization of the Heisenberg group, where all representations can be obtained through a simple induction process.
How does geometric quantization interact with symplectic groupoid structures?
Geometric quantization applied to symplectic groupoids results in C* algebras that encapsulate the underlying Poisson geometry. Specific examples demonstrate how the quantization of T* M results in trivial C* algebras when the underlying Poisson structure is zero.
What role do Bohr-Sommerfeld conditions play in quantization?
Bohr-Sommerfeld conditions ensure the existence of polarized sections by requiring trivial holonomy along Lagrangian leaves. This leads to a topological subgroupoid formation, allowing the definition of a convolution product that completes the quantization process.
What distinguishes Poisson-Lie groups from coisotropic subgroups?
Poisson-Lie groups have Poisson structures characterized by their non-constant rank, while coisotropic subgroups relax this strictness, allowing more flexibility by being invariant under group actions. The distinction impacts their integration and the nature of their associated symplectic structures.
How does the presence of symmetries affect quantization in Poisson manifolds?
Symmetries in Poisson manifolds often necessitate modified quantization techniques, as seen in cases where the integrability conditions for symplectic groupoids are influenced by these symmetries. The presence of coisotropic subgroups exemplifies this, requiring careful consideration in the quantization process.
References (48)
- Kirillov, A. Lectures on the Orbit Method, Graduate Studies in Mathematics; American Mathematical Society: Providence, RI, USA, 2004.
- Vogan, D. Review of "Lectures on the orbit method" by A. A. Kirillov. Bull. Am Math. Soc. 2005, 42, 535-544. [CrossRef]
- Neshveyev, S.; Tuset, L. Quantized algebras of functions with Poisson stablizers. Commun. Math. Phys. 2012, 312, 223-225.
- Stokman, J.V.; Dijkhuizen, M. Quantized flag manifolds and * -irreducible representations. Commun. Math. Phys. 1999, 203, 297-324. [CrossRef]
- Ciccoli, N. A new approach to quantum orbit method for standard quantum CP N . Rend. Sem. Mat. Pol. Torino 2016, 74, 45-53.
- Weinstein, A. Noncommutative geometry and geometric quantization. In Symposium on Symplectic Geometry and Mathematical Physics in Honor of Jean-Marie Souriau; Birkhäuser: Boston, MA, USA, 1991.
- Hawkins, E. A groupoid approach to quantization. J. Symp. Geom. 2008, 6, 61-125. [CrossRef]
- Crainic, M.; Loja-Fernandes, R. Integrability of Lie brackets. Ann. Math. 2003, 157, 575-620. [CrossRef]
- Mackenzie, K. Lie Groupoids and Lie Algebroids in Differential Geometry; London Mathematical Society Lecture Series; Cambridge University Press: Cambridge, UK, 2005; Volume 213.
- Weinstein, A.; Xu, P. Extensions of symplectic groupoids and quantization. J. Reine Angew. Math. 1991, 417, 159-189.
- Renault, J. Groupoid C * Algebras. In Lecture Notes in Mathematics; Springer: New York, NY, USA, 1985; Volume 793.
- Jotz-Lean, M. Foliated groupoids and infinitesimal ideal systems. Indag. Math. 2014, 25, 1019-1053. [CrossRef]
- Bonechi, F.; Ciccoli, N.; Qiu, J.; Tarlini, M. Quantization of the Poisson manifold from integrability of the modular class. Commun. Math. Phys. 2014, 331, 851-885. [CrossRef]
- Williams, D. Groupoid C * -Algebras, a Tool-Kit; American Mathematical Society: Providence, RI, USA, 2019.
- Brenken, B. Representations and automorphisms of the irrational rotation algebra. Pac. J. Math. 1984, 111, 257-282. [CrossRef]
- Drinfeld, V. Quantum groups. Zap. Nauchnykh Semin. POMI 1986, 155, 18-49.
- Korogodskij, L.I.; Soibelman, Y. Algebra of Functions on Quantum Groups I, Math. Surveys and Monographs; American Mathematical Society: Providence, RI, USA, 1998; Volume 56.
- Gomez, X. Classification of three-dimensional Lie bialgebras. J. Math. Phys. 2000, 41, 4349-4359. [CrossRef]
- Ciccoli, N.; Gavarini, F. A global quantum duality principle for coisotropic subgroups and homogeneous spaces. Doc. Math. 2014, 19, 333-380.
- Lu, J.H. Momentum mappings and reductions of Poisson Lie group actions. In Seminaire Sud-Rhodanien de Geometrie Berkeley; Springer: New York, NY, USA, 1991; pp. 209-226.
- Zakrzewski, S. Poisson homogeneous spaces. In Quantum Groups (Karpacz, 1994);
- Lukierski, J., Popowicz, Z., Sobczyk, J., Eds.; PWN: Warszaw, Poland, 1995; pp. 629-639.
- Ciccoli, N.; Sheu, A.J.-L. Covariant Poisson structures on complex Grassmannians. Commun. Anal. Geom. 2006, 14, 443-474.
- Bonechi, F.; Ciccoli, N.; Staffolani, N.; Tarlini, M. On the integration of Poisson homogeneous spaces. J. Geom. Phys. 2008, 58, 1519-1529. [CrossRef]
- Bursztyn, H.; Iglesias-Ponte, D.; Lu, J.H. Dirac geometry and integration of Poisson homogeneous spaces. arXiv 2019, arXiv:1905.11453.
- Xu, P. Poisson manifolds associated with group actions and classical triangular r-matrices. J. Funct. Anal. 1993, 112, 218-240.
- Khang, B.J. Non compact quantum groups arising from Heisenberg type Lie bialgebra. J. Oper. Theory 2000, 44, 303-334.
- Khang, B.J. * -representations of a q-Heisenberg group algebra. Houst. J. Math. 2002, 28, 529-552.
- Khang, B.J. Dressing orbits and a quantum Heisenberg group algebra. Ill. J. Math. 2004, 48, 609-634. [CrossRef]
- Cahen, M.; Ohn, C. Bialgebra structures on the Heisenber algebra. Bull. Acad. Roy Belgique 1989, 75, 315-321.
- Szymczak, S.; Zakrzewski, S. Quantum deformation of the Heisenberg group obtained by geometric quantization. J. Geom. Phys. 1990, 7, 553-567. [CrossRef]
- Celeghini, E.; Giachetti, R.; Sorace, N.; Tarlini, M. The quantum Heisenberg group H(1) q . J. Math. Phys. 1991, 32, 1155-1158.
- Lu, J.H.; Weinstein, A. Poisson-Lie groups, dressing transformation and Bruhat decomposition. J. Diff. Geom. 1990, 31, 501-526.
- Karolinsky, E. A classification of Poisson homogeneous spaces of complex reductive Poisson-Lie groups. Banach Cent. Publ. 2000, 51 103-108.
- Khoroshkin, S.; Radul, A.; Rubtsov, V. A family of Poisson structures on Hermitian symmetric spaces. Commun. Math. Phys. 1992, 152, 299-315. [CrossRef]
- Soibelman, Y. Orbit method for the algebra of functions on quantum groups and coherent states I. Int. Math. Res. Not. 1993, 6, 151-163. [CrossRef]
- Levendorskij, S.L.; Soibelman, Y. Algebras of functions on compact quantum groups, Schubert cells and quantum tori. Commun. Math. Phys. 1991, 139, 141-170. [CrossRef]
- Stokman, J. The quantum orbit method for generalized flag manifolds. Math. Res. Lett. 2003, 10, 469-481. [CrossRef]
- Ballesteros, A.; Gubitosi, G.; Gutierrez-Sagredo, I.; Herranz, F.J. The κ-Newtonian and κ-Carrollian algebras and their noncommu- tative spacetimes. Phys. Lett. B 2020, 805, 135461. [CrossRef]
- Ballesteros, A.; Herranz, F.J.; Meusberger, C.; Naranjo, P. Twisted (2+ 1) κ-AdS algebra, Drinfel'd doubles and non-commutative spacetimes. Symmetry Integr. Geom. Methods Appl. 2014, 10, 52. [CrossRef]
- Ballesteros, A.; Herranz, F.J.; Meusberger, C. Three-dimensional gravity and Drinfel'd doubles: Spacetimes and symmetries from quantum deformations. Phys. Lett. B 2010, 687, 375-381. [CrossRef]
- Lu, J.H.; Weinstein, A. Grupoides symplectiques doubles de groupes de Lie-Poisson. Compt. Rend. Sci. Ser. I Math. 1989, 309, 951-954.
- Bonechi, F.; Qiu, J.; Tarlini, M. Complete integrability from Poisson-Nijenhuis structures on compact Hermitian symmetric spaces. J. Symp. Geom. 2018, 16, 1167-1208. [CrossRef]
- Ugaglia, M. On a Poisson structure on the spaces of Stokes matrices. Int. Math. Res. Not. 1999, 9, 473-493. [CrossRef]
- Bondal, A. A symplectic groupoid of triangular bilinear forms and the braid group. Izv. Math. 2004, 68, 659. [CrossRef]
- Ciccoli, N. Quantum orbit method for the CLM 3-sphere. 2021, submitted.
- Auslander, L.; Kostant, B. Polarization and unitary representations of solvable Lie groups. Invent. Math. 1971, 14, 255-354.
- Ciccoli, N. Quantum orbit method for locally Abelian Poisson manifolds. 2021, in preparation.