Academia.eduAcademia.edu

Outline

Around Kolmogorov Complexity: Basic Notions and Results

2015, Measures of Complexity

https://doi.org/10.1007/978-3-319-21852-6_7

Abstract

Algorithmic information theory studies description complexity and randomness and is now a well known field of theoretical computer science and mathematical logic. There are several textbooks and monographs devoted to this theory [4, 1, 5, 2, 7] where one can find the detailed exposition of many difficult results as well as historical references. However, it seems that a short survey of its basic notions and main results relating these notions to each other, is missing. This report attempts to fill this gap and covers the basic notions of algorithmic information theory: Kolmogorov complexity (plain, conditional, prefix), Solomonoff universal a priori probability, notions of randomness (Martin-Löf randomness, Mises-Church randomness), effective Hausdorff dimension. We prove their basic properties (symmetry of information, connection between a priori probability and prefix complexity, criterion of randomness in terms of complexity, complexity characterization for effective dimension) and show some applications (incompressibility method in computational complexity theory, incompleteness theorems). It is based on the lecture notes of a course at Uppsala University given by the author [6].

References (32)

  1. Prove that if C(y|z) n and C(z|y) n for strings y and z of length n, then C(yz) 2n -O(log n).
  2. Prove that if x and y are strings of length n and C(xy) 2n, then the length of every common subsequence u of x and y does not exceed 0.99n. (A string u is a subsequence of a string v if u can be obtained from v by deleting some terms. For example, 111 is a subsequence of 010101, but 1110 and 1111 are not.)
  3. Let a 0 a 1 a 2 . . . and b 0 b 1 b 2 . . . be Martin-Löf random sequences and c 0 c 1 c 2 . . . be a computable sequence. Can the sequence (a 0 ⊕ b 0 )(a 1 ⊕ b 1 )(a 2 ⊕ b 2 ) . . . be non-random? (
  4. True or false: C(x, y) K(x) + C(y) + O(1)? 10. Prove that for every c there exists x such that K(x) -C(x) > c.
  5. Let m(x) be a priori probability of string x. Prove that the binary represen- tation of real number ∑ x m(x) is a Martin-Löf random sequence. 12. Prove that C(x) + C(x, y, z) C(x, y) + C(x, z) + O(log n) for strings x, y, z of length at most n. 13. (Continued) Prove a similar result for prefix complexity with O(1) instead of O(log n).
  6. Calude C.S., Information and Randomness. An Algorithmic Perspective, 2nd ed., Springer, 2002, 468 p., ISBN 3-540-43466-6.
  7. Downey R.G., Hirschfeldt D.R., Algorithmic Randomness and Complexity, Springer, 2010, 881 p. ISBN 978-0-387-95567-4.
  8. Erdös P., Spencer J., Probabilistic methods in combinatorics, Academic Press, 1974.
  9. Li M., Vitányi P.An introduction to Kolmogorov complexity and its applica- tions, 3rd ed., Springer, 2008, 792 p. ISBN 978-0-387-49820-1.
  10. Nies A., Computability and Randomness, Oxford University Press, 2009, 456 p., ISBN 978-0-199-65260-0
  11. Shen A., Algorithmic information theory and Kolmogorov complexity, Lecture notes , Uppsala University TR2000-034, www.it.su.se/research/publications/reports/2000-034.
  12. Vereshchagin N.K., Uspensky V.A., Shen A., Kolmogorovskaya slozhnost' i algoritmicheskaya sluchainost', [Kolmogorov complexity and algorith- mic randomness]. In Russian. Moscow, MCCME Publishers, 2013. 576 p., ISBN 978-5-4439-0212-8. See ftp.mccme.ru/users/shen/kolmbook/ and www.lirmm.fr/ ~ashen/kolmbook.pdf. Draft English translation: www.lirmm.fr/ ~ashen/kolmbook-eng.pdf.
  13. Compressing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
  14. 2 Kolmogorov complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
  15. 3 Optimal decompression algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4 The construction of the optimal decompression algorithm . . . . . . . . . . . . . . . . . . .
  16. 5 Basic properties of Kolmogorov complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
  17. 6 Algorithmic properties of C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
  18. Complexity and incompleteness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
  19. 8 Algorithmic properties of C (continued) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
  20. 9 An encodings-free definition of complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 10 Axioms of complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 11 Complexity of pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
  21. 12 Conditional complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 13 Pair complexity and conditional complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 14 Applications of conditional complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 15 Incompressible strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 16 Computability and complexity of initial segments . . . . . . . . . . . . . . . . . . . . . . . . . 15 17 Incompressibility and lower bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 18 Incompressibility and prime numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
  22. 19 Incompressible matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 20 Incompressible graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
  23. 21 Incompressible tournaments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
  24. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
  25. k-and k + 1-head automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
  26. Heap sort: time analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 25 Infinite random sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 26 Classical probability theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
  27. Strong Law of Large Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 28 Effectively null sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 29 Maximal effectively null set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 30 Gambling and selection rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 31 Selection rules and Martin-Löf randomness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 32 Probabilistic machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 33 A priori probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
  28. 34 Prefix decompression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 35 Prefix complexity and length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
  29. A priori probability and prefix complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 37 Prefix complexity of a pair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 38 Prefix complexity and randomness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
  30. Strong law of large numbers revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
  31. 40 Hausdorff dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
  32. Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48