A Guide to Conquer the Biological Network Era Using Graph Theory
Frontiers in Bioengineering and Biotechnology
https://doi.org/10.3389/FBIOE.2020.00034Abstract
Networks are one of the most common ways to represent biological systems as complex sets of binary interactions or relations between different bioentities. In this article, we discuss the basic graph theory concepts and the various graph types, as well as the available data structures for storing and reading graphs. In addition, we describe several network properties and we highlight some of the widely used network topological features. We briefly mention the network patterns, motifs and models, and we further comment on the types of biological and biomedical networks along with their corresponding computer-and human-readable file formats. Finally, we discuss a variety of algorithms and metrics for network analyses regarding graph drawing, clustering, visualization, link prediction, perturbation, and network alignment as well as the current state-of-the-art tools. We expect this review to reach a very broad spectrum of readers varying from experts to beginners while encouraging them to enhance the field further.
References (221)
- Adai, A. T., Date, S. V., Wieland, S., and Marcotte, E. M. (2004). LGL: creating a map of protein function with an algorithm for visualizing very large biological networks. J. Mol. Biol. 340, 179-190. doi: 10.1016/j.jmb.2004.04.047
- Al-Anzi, B., Arpp, P., Gerges, S., Ormerod, C., Olsman, N., and Zinn, K. (2015). Experimental and computational analysis of a large protein network that controls fat storage reveals the design principles of a signaling network. PLoS Comput. Biol. 11:e1004264. doi: 10.1371/journal.pcbi.1004264
- Alexander, S., and Joydeep, G. (2003). Cluster ensembles-a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3, 583-617. doi: 10.1162/153244303321897735
- Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local alignment search tool. J. Mol. Biol. 215, 403-410. doi: 10.1016/S0022-2836(05)80360-2
- Ana, L. N. F., and Jain, A. K. (2003). "Robust data clustering, " in: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003
- Proceedings (Madison, WI: IEEE Comput. Soc), II-128-II-133. Available online at: http://ieeexplore.ieee.org/document/1211462/ (accessed August 21, 2019).
- Athanasiadis, E. I., Bourdakou, M. M., and Spyrou, G. M. (2015). Zoomout: analyzing multiple networks as single nodes. IEEE/ACM Trans. Comput. Biol. Bioinform. 12, 1213-1216. doi: 10.1109/TCBB.2015. 2424411
- Auber, D., Archambault, D., Bourqui, R., Delest, M., Dubois, J., Lambert, A., et al. (2017). "Tulip 5, " in Encyclopedia of Social Network Analysis and Mining, eds R. Alhajj and J. Rokne (New York, NY: Springer New York), 1-28.
- Azad, A., Pavlopoulos, G. A., Ouzounis, C. A., Kyrpides, N. C., and Buluç, A. (2018). HipMCL: a high-performance parallel implementation of the Markov clustering algorithm for large-scale networks. Nucleic Acids Res. 46:e33. doi: 10.1093/nar/gkx1313
- Bader, G. D., Betel, D., and Hogue, C. W. (2003). BIND: the biomolecular interaction network database. Nucleic Acids Res. 31, 248-250. doi: 10.1093/nar/gkg056
- Bader, G. D., and Hogue, C. W. (2003). An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 4:2. doi: 10.1186/1471-2105-4-2
- Barabasi, A.-L., and Albert, R. (1999). Emergence of scaling in random networks. Science 286, 509-512. doi: 10.1126/science.286.5439.509
- Barabási, A.-L., and Oltvai, Z. N. (2004). Network biology: understanding the cell's functional organization. Nat. Rev. Genet. 5, 101-113. doi: 10.1038/nrg1272
- Barrett, T., Wilhite, S. E., Ledoux, P., Evangelista, C., Kim, I. F., Tomashevsky, M., et al. (2013). NCBI GEO: archive for functional genomics data sets-update. Nucleic Acids Res. 41, D991-D995. doi: 10.1093/nar/gks1193
- Bastian, M., Heymann, S., and Jacomy, M. (2009). "Gephi: an open source software for exploring and manipulating networks, " in International AAAI Conference on Weblogs and Social Media. Available online at: http://www.aaai.org/ocs/index. php/ICWSM/09/paper/view/154
- Baum, B. R. (1989). PHYLIP: Phylogeny inference package. version 3.2. joel felsenstein. Q. Rev. Biol. 64, 539-41. doi: 10.1086/416571
- Bindea, G., Mlecnik, B., Hackl, H., Charoentong, P., Tosolini, M., Kirilovsky, A., et al. (2009). ClueGO: a cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25, 1091-1093. doi: 10.1093/bioinformatics/btp101
- Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. (2008). Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008:P10008. doi: 10.1088/1742-5468/2008/10/P10008
- Bollobás, B. (2001). Random Graphs, 2nd Edn. Cambridge, NY: Cambridge University Press, 498. doi: 10.1017/CBO9780511814068
- Bonacich, P. (1987). Power and centrality: a family of measures. Am. J. Sociol. 92, 1170-1182. doi: 10.1086/228631
- Bonnici, V., Caro, G. D., Constantino, G., Liuni, S., D'Elia, D., Bombieri, N., et al. (2018). Arena-Idb: a platform to build human non-coding RNA interaction networks. BMC Bioinform. 19 (Suppl. 10):350. doi: 10.1186/s12859-018-2298-8
- Brandes, U., Eiglsperger, M., Lerner, J., and Pich, C. (2017). Graph Markup Language (GraphML). Boca Raton, FL: Taylor & Francis, CRC Press, 517-541.
- Breitkreutz, B.-J., Stark, C., and Tyers, M. (2002). Osprey: a network visualization system. Genome Biol. 3:PREPRINT0012. doi: 10.1186/gb-2002-3-12-preprint0012
- Brohée, S., Faust, K., Lima-Mendez, G., Sand, O., Janky, R., Vanderstocken, G., et al. (2008). NeAT: a toolbox for the analysis of biological networks, clusters, classes and pathways. Nucleic Acids Res. 36, W444-W451. doi: 10.1093/nar/ gkn336
- Brohée, S., and van Helden, J. (2006). Evaluation of clustering algorithms for protein-protein interaction networks. BMC Bioinform. 7:488. doi: 10.1186/1471-2105-7-488
- Chaouiya, C. (2007). Petri net modelling of biological networks. Brief Bioinform. 8, 210-219. doi: 10.1093/bib/bbm029
- Chatr-aryamontri, A., Ceol, A., Palazzi, L. M., Nardelli, G., Schneider, M. V., Castagnoli, L., et al. (2007). MINT: the molecular INTeraction database. Nucleic Acids Res. 35, D572-D574. doi: 10.1093/nar/gkl950
- Conant, G. C., and Wagner, A. (2003). Convergent evolution of gene circuits. Nat. Genet. 34, 264-266. doi: 10.1038/ng1181
- Croft, D. P., Krause, J., and James, R. (2004). Social networks in the guppy (poecilia reticulata). Proc. Biol. Sci. 271 (Suppl. 6):S516-S519. doi: 10.1098/rsbl.2004.0206
- Dagum, L., and Menon, R. (1998). Open MP: an industry standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5, 46-55. doi: 10.1109/99.660313
- Danon, L., Ford, A. P., House, T., Jewell, C. P., Keeling, M. J., Roberts, G. O., et al. (2011). Networks and the epidemiology of infectious disease. Interdiscip. Perspect Infect. Dis. 2011, 1-28. doi: 10.1155/2011/284909
- Darzi, Y., Letunic, I., Bork, P., and Yamada, T. (2018). iPath3.0: interactive pathways explorer v3. Nucleic Acids Res. 46, W510-W513. doi: 10.1093/nar/gky299
- Delmas, E., Besson, M., Brice, M.-H., Burkle, L. A., Dalla Riva, G. V., Fortin, M.-J., et al. (2019). Analysing ecological networks of species interactions: analyzing ecological networks. Biol. Rev. 94, 16-36. doi: 10.1111/brv.12433
- Demir, E., Cary, M. P., Paley, S., Fukuda, K., Lemer, C., Vastrik, I., et al. (2010). The BioPAX community standard for pathway data sharing. Nat. Biotechnol. 28, 935-942. doi: 10.1038/nbt.1666
- Doncheva, N. T., Assenov, Y., Domingues, F. S., and Albrecht, M. (2012). Topological analysis and interactive visualization of biological networks and protein structures. Nat. Protoc. 7, 670-685. doi: 10.1038/nprot.2012.004
- Dongen, S. (2000). Performance Criteria for Graph Clustering and Markov Cluster Experiments. National research institute for mathematics and computer science.
- Eden, E., Navon, R., Steinfeld, I., Lipson, D., and Yakhini, Z. (2009). GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinform. 10:48. doi: 10.1186/1471-2105-10-48
- Ekre, A. R., and Mante, R. V. (2016). "Genome sequence alignment tools: a review, " in 2016 2nd International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB) (Chennai: IEEE), 677-681. Available online at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper. htm?arnumber=7538378 (accessed July 18, 2019).
- Enright, A. J., Van Dongen, S., and Ouzounis, C. A. (2002). An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 30, 1575-1584. doi: 10.1093/nar/30.7.1575
- Fabregat, A., Jupe, S., Matthews, L., Sidiropoulos, K., Gillespie, M., Garapati, P., et al. (2018). The reactome pathway knowledgebase. Nucleic Acids Res. 46, D649-D655. doi: 10.1093/nar/gkx1132
- Fagny, M., Paulson, J. N., Kuijjer, M. L., Sonawane, A. R., Chen, C.-Y., Lopes- Ramos, C. M., et al. (2017). Exploring regulation in tissues with eQTL networks. Proc. Natl. Acad. Sci. U.S.A. 114, E7841-E7850. doi: 10.1073/pnas.1707375114
- Ferro, A., Giugno, R., Pigola, G., Pulvirenti, A., Skripin, D., Bader, G. D., et al. (2007). NetMatch: a cytoscape plugin for searching biological networks. Bioinform. Oxf. Engl. 23, 910-912. doi: 10.1093/bioinformatics/btm032
- Flannick, J., Novak, A., Do, C. B., Srinivasan, B. S., and Batzoglou, S. (2008). "Automatic parameter learning for multiple network alignment, " in Research in Computational Molecular Biology, eds M. Vingron and L. Wong (Berlin: Springer Berlin Heidelberg), 214-231. Available online at: http://link.springer.com/10.1007/978-3-540-78839-3_19 (accessed December 16, 2019).
- Forum, M. P. I. (1994). MPI: A Message-Passing Interface. Oregon Graduate Institute School of Science & Engineering. Report No.: 890839.
- Fowlkes, E. B., and Mallows, C. L. (1983). A method for comparing two hierarchical clusterings. J. Am. Stat. Assoc. 78, 553-569. doi: 10.1080/01621459.1983.10478008
- Franceschini, A., Szklarczyk, D., Frankild, S., Kuhn, M., Simonovic, M., Roth, A., et al. (2013). STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 41, D808-D815. doi: 10.1093/nar/gks1094
- Franz, M., Lopes, C. T., Huck, G., Dong, Y., Sumer, O., and Bader, G. D. (2016). Cytoscape.js: a graph theory library for visualisation and analysis. Bioinform. Oxf. Engl. 32, 309-311. doi: 10.1093/bioinformatics/btv557
- Franz, M., Rodriguez, H., Lopes, C., Zuberi, K., Montojo, J., Bader, G. D., et al. (2018). GeneMANIA update 2018. Nucleic Acids Res. 46, W60-W64. doi: 10.1093/nar/gky311
- Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry 40, 35-41. doi: 10.2307/3033543
- Frey, B. J., and Dueck, D. (2007). Clustering by passing messages between data points. Science 315, 972-976. doi: 10.1126/science.1136800
- Fruchterman, T. M. J., and Reingold, E. M. (1991). Graph drawing by force-directed placement. Softw. Pract. Exp. 21, 1129-1164. doi: 10.1002/spe.4380211102
- Fung, B. C. M., Wang, K., and Ester, M. (2003). "Hierarchical document clustering using frequent itemsets, " in Proceedings of the 2003 SIAM International Conference on Data Mining (San Francisco, CA: Society for Industrial and Applied Mathematics), 59-70. Available online at: https://epubs.siam.org/doi/10.1137/1.9781611972733.6 (accessed September 2, 2019).
- Gabor, C., and Nepusz, T. (2006). The Igraph Software Package for Complex Network Research. InterJournal;Complex Systems:1695.
- Gagescu, R. (2001). The visible cell project. Nat. Rev. Mol. Cell Biol. 2, 231-231. doi: 10.1038/35067039
- Gagneur, J., Jackson, D. B., and Casari, G. (2003). Hierarchical analysis of dependency in metabolic networks. Bioinformatics 19, 1027-1034. doi: 10.1093/bioinformatics/btg115
- Gavin, A.-C., Aloy, P., Grandi, P., Krause, R., Boesche, M., Marzioch, M., et al. (2006). Proteome survey reveals modularity of the yeast cell machinery. Nature 440, 631-636. doi: 10.1038/natur
- Gehlenborg, N., O'Donoghue, S. I., Baliga, N. S., Goesmann, A., Hibbs, M. A., Kitano, H., et al. (2010). Visualization of omics data for systems biology. Nat. Methods 7, S56-S68. doi: 10.1038/nmeth.1436
- Gene Ontology Consortium (2004). The gene ontology (GO) database and informatics resource. Nucleic Acids Res. 32, 258D-261D. doi: 10.1093/nar/gkh036
- Gentleman, R. C., Carey, V. J., Bates, D. M., Bolstad, B., Dettling, M., Dudoit, S., et al. (2004). Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5:R80. doi: 10.1186/gb-2004-5-10-r80
- Gioutlakis, A., Klapa, M. I., and Moschonas, N. K. (2017). PICKLE 2.0: a human protein-protein interaction meta-database employing data integration via genetic information ontology. PLoS ONE 12:e0186039. doi: 10.1371/journal.pone.0186039
- Goh, K.-I., Cusick, M. E., Valle, D., Childs, B., Vidal, M., and Barabási, A.-L. (2007). The human disease network. Proc. Natl. Acad. Sci. U.S.A. 104, 8685-8690. doi: 10.1073/pnas.0701361104
- Golding, B., and Felsenstein, J. (1990). A maximum likelihood approach to the detection of selection from a phylogeny. J. Mol. Evol. 31, 511-523. doi: 10.1007/BF02102078
- Gottlieb, A., Stein, G. Y., Ruppin, E., and Sharan, R. (2011). PREDICT: a method for inferring novel drug indications with application to personalized medicine. Mol. Syst. Biol. 7:496. doi: 10.1038/msb.2011.26
- Gu, S., Johnson, J., Faisal, F. E., and Milenković T. (2018). From homogeneous to heterogeneous network alignment via colored graphlets. Sci. Rep. 8:12524. doi: 10.1038/s41598-018-30831-w
- Guns, R. (2014). "Link prediction, " in Measuring Scholarly Impact, eds Y. Ding, R. Rousseau, and D. Wolfram (Cham: Springer International Publishing), 35-55. Available online at: http://link.springer.com/10.1007/978-3-319-10377- 8_2 (accessed December 17, 2019).
- Hagberg, A., Schult, D., and Swart, P. (2008). "Exploring network structure, dynamics, and function using network, " in Proceedings of the 7th Python in Science Conference (Pasadena, CA: SciPy), 11-15.
- Hage, P., and Harary, F. (1995). Eccentricity and centrality in networks. Soc. Netw. 17, 57-63. doi: 10.1016/0378-8733(94)00248-9
- Han, H., Cho, J.-W., Lee, S., Yun, A., Kim, H., Bae, D., et al. (2018). TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res. 46, D380-D386. doi: 10.1093/nar/gkx1013
- Han, H., Lee, S., and Lee, I. (2019). NGSEA: network-based gene set enrichment analysis for interpreting gene expression phenotypes with functional gene sets. Mol. Cells 42, 579-588. doi: 10.1101/636498
- Hermjakob, H., Montecchi-Palazzi, L., Bader, G., Wojcik, J., Salwinski, L., Ceol, A., et al. (2004b). The HUPO PSI's molecular interaction format-a community standard for the representation of protein interaction data. Nat. Biotechnol. 22, 177-183. doi: 10.1038/nbt926
- Hermjakob, H., Montecchi-Palazzi, L., Lewington, C., Mudali, S., Kerrien, S., Orchard, S., et al. (2004a). IntAct: an open source molecular interaction database. Nucleic Acids Res. 32, D452-D455. doi: 10.1093/nar/gkh052
- Himmelstein, D. S., and Baranzini, S. E. (2015). Heterogeneous network edge prediction: a data integration approach to prioritize disease- associated genes. PLoS Comput. Biol. 11:e1004259. doi: 10.1371/journal.pcbi. 1004259
- Holding, A. N., Cook, H. V., and Markowetz, F. (2019). Data generation and network reconstruction strategies for single cell transcriptomic profiles of CRISPR-mediated gene perturbations. Biochim. Biophys. Acta BBA Gene Regul. Mech. 20:194441. doi: 10.1016/j.bbagrm.2019.194441
- Hu, Z., Hung, J.-H., Wang, Y., Chang, Y.-C., Huang, C.-L., Huyck, M., et al. (2009). VisANT 3.5: multi-scale network visualization, analysis and inference based on the gene ontology. Nucleic Acids Res. W115-W121. doi: 10.1093/nar/gkp406
- Huang, D. W., Sherman, B. T., and Lempicki, R. A. (2009a). Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1-13. doi: 10.1093/nar/gkn923
- Huang, D. W., Sherman, B. T., and Lempicki, R. A. (2009b). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44-57. doi: 10.1038/nprot.2008.211
- Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H., et al. (2003). The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinform. Oxf. Engl. 19, 524-531. doi: 10.1093/bioinformatics/btg015
- Hung, J.-H., Yang, T.-H., Hu, Z., Weng, Z., and DeLisi, C. (2012). Gene set enrichment analysis: performance evaluation and usage guidelines. Brief Bioinform. 13, 281-291. doi: 10.1093/bib/bbr049
- Huson, D. H., Richter, D. C., Rausch, C., Dezulian, T., Franz, M., and Rupp, R. (2007). Dendroscope: an interactive viewer for large phylogenetic trees. BMC Bioinform. 8:460. doi: 10.1186/1471-2105-8-460
- Huson, D. H., Rupp, R., and Scornavacca, C. (2010). Phylogenetic Networks: Concepts, Algorithms and Applications. Cambridge: Cambridge University Press. Available online at: http://ebooks.cambridge.org/ref/id/ CBO9780511974076 (accessed July 22, 2019).
- Ings, T. C., Montoya, J. M., Bascompte, J., Blüthgen, N., Brown, L., Dormann, C. F., et al. (2009). Ecological networks-beyond food webs. J. Anim. Ecol. 78, 253-269. doi: 10.1111/j.1365-2656.2008.01460.x
- Iragne, F., Nikolski, M., Mathieu, B., Auber, D., and Sherman, D. (2005). ProViz: protein interaction visualization and exploration. Bioinform. Oxf. Engl. 21, 272-274. doi: 10.1093/bioinformatics/bth494
- Ito, T., Shimbo, M., Kudo, T., and Matsumoto, Y. (2005). "Application of kernels to link analysis, " in Proceeding of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining -KDD'05 (Chicago, IL: ACM Press), 586. Available online at: http://portal.acm.org/citation.cfm?doid= 1081870.1081941 (accessed December 17, 2019).
- Jalili, M., Salehzadeh-Yazdi, A., Gupta, S., Wolkenhauer, O., Yaghmaie, M., Resendis-Antonio, O., et al. (2016). Evolution of centrality measurements for the detection of essential proteins in biological networks. Front. Physiol. 7:375. doi: 10.3389/fphys.2016.00375
- Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N., and Barabási, A. L. (2000). The large-scale organization of metabolic networks. Nature 407, 651-654. doi: 10.1038/35036627
- Jiang, P., and Singh, M. (2010). SPICi: a fast clustering algorithm for large biological networks. Bioinform. Oxf. Engl. 26, 1105-1111. doi: 10.1093/bioinformatics/btq078
- Junker, B. H., and Schreiber, F. (eds) (2008). Analysis of Biological Networks, Wiley Series on Bioinformatics (Hoboken, NJ: Wiley-Interscience), 346. doi: 10.1002/9780470253489
- Kalaev, M., Smoot, M., Ideker, T., and Sharan, R. (2008). NetworkBLAST: comparative analysis of protein networks. Bioinformatics 24, 594-596. doi: 10.1093/bioinformatics/btm630
- Kandasamy, K., Mohan, S., Raju, R., Keerthikumar, S., Kumar, G. S. S., Venugopal, A. K., et al. (2010). NetPath: a public resource of curated signal transduction pathways. Genome Biol. 11:R3. doi: 10.1186/gb-2010-11-1-r3
- Kanehisa, M., and Goto, S. (2000). KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27-30. doi: 10.1093/nar/28.1.27
- Kashtan, N., Itzkovitz, S., Milo, R., and Alon, U. (2004). Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs. Bioinform. Oxf. Engl. 20, 1746-1758. doi: 10.1093/bioinformatics/bth163
- Kavurucu, Y. (2015). A comparative study on network motif discovery algorithms. Int. J. Data Min. Bioinforma.11, 180-204. doi: 10.1504/IJDMB.2015.066777
- Kiełbasa, S. M., Wan, R., Sato, K., Horton, P., and Frith, M. C. (2011). Adaptive seeds tame genomic sequence comparison. Genome Res. 21, 487-493. doi: 10.1101/gr.113985.110
- Kim, W., Li, M., Wang, J., and Pan, Y. (2011). Biological network motif detection and evaluation. BMC Syst. Biol. 5 (Suppl. 3):S5. doi: 10.1186/1752-0509-5-S3-S5
- Kirch, W. (ed) (2008). Pearson's Correlation Coefficient. In: Encyclopedia of Public Health (Dordrecht: Springer Netherlands), 1090-1. Available online at: http:// link.springer.com/10.1007/978-1-4020-5614-7_2569 (accessed November 12, 2019).
- Knuth, D. E. (1997). The Art of Computer Programming, 3rd Edn. Reading: Addison-Wesle.
- Köhler, J., Baumbach, J., Taubert, J., Specht, M., Skusa, A., Rüegg, A., et al. (2006). Graph-based analysis and visualization of experimental results with ONDEX. Bioinform. Oxf. Engl. 22, 1383-1390. doi: 10.1093/bioinformatics/btl081
- Koschützki, D., and Schreiber, F. (2008). Centrality analysis methods for biological networks and their application to gene regulatory networks. Gene Regul. Syst. Biol. 2, 193-201. doi: 10.4137/GRSB.S702
- Koyutürk, M., Kim, Y., Topkara, U., Subramaniam, S., Szpankowski, W., and Grama, A. (2006). Pairwise alignment of protein interaction networks. J. Comput. Biol. 13, 182-199. doi: 10.1089/cmb.2006.13.182
- Kramer, F., Bayerlová, M., Klemm, F., Bleckmann, A., and Beissbarth, T. (2013). rBiopaxParser-an R package to parse, modify and visualize BioPAX data. Bioinform. Oxf. Engl. 29, 520-522. doi: 10.1093/bioinformatics/bts710
- Krzywinski, M., Birol, I., Jones, S. J., and Marra, M. A. (2012). Hive plots- rational approach to visualizing networks. Brief Bioinform. 13, 627-644. doi: 10.1093/bib/bbr069
- Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., et al. (2009). Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639-1645. doi: 10.1101/gr.092759.109
- Kuchaiev, O., Milenković, T., Memišević, V., Hayes, W., and PrŽulj, N. (2010). Topological network alignment uncovers biological function and phylogeny. J. R. Soc. Interface 7, 1341-1354. doi: 10.1098/rsif.2010.0063
- Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870-1874. doi: 10.1093/molbev/msw054
- Kunegis, J., Fay, D., and Bauckhage, C. (2013). Spectral evolution in dynamic networks. Knowl. Inf. Syst. 37, 1-36. doi: 10.1007/s10115-012-0575-9
- Kutmon, M., van Iersel, M. P., Bohler, A., Kelder, T., Nunes, N., Pico, A. R., et al. (2015). PathVisio 3: an extendable pathway analysis toolbox. PLoS Comput. Biol. 11:e1004085. doi: 10.1371/journal.pcbi. 1004085
- Langfelder, P., Zhang, B., and Horvath, S. (2008). Defining clusters from a hierarchical cluster tree: the dynamic tree cut package for R. Bioinformatics 24, 719-720. doi: 10.1093/bioinformatics/btm563
- Le Novère, N., Hucka, M., Mi, H., Moodie, S., Schreiber, F., Sorokin, A., et al. (2009). Erratum: the systems biology graphical notation. Nat. Biotechnol. 27, 864-864. doi: 10.1038/nbt0909-864d
- Lehne, B., and Schlitt, T. (2009). Protein-protein interaction databases: keeping up with growing interactomes. Hum. Genom. 3, 291-297. doi: 10.1186/1479-7364-3-3-291
- Leskovec, J., Backstrom, L., Kumar, R., and Tomkins, A. (2008). "Microscopic evolution of social networks, " in Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining -KDD 08 (Las Vegas, NV: ACM Press), 462. Available online at: http://dl.acm.org/ citation.cfm?doid=1401890.1401948 (accessed December 17, 2019).
- Leskovec, J., and Sosič, R. (2016). SNAP: a general-purpose network analysis and graph-mining library. ACM Trans. Intell. Syst. Technol. 8, 1-20. doi: 10.1145/2898361
- Letunic, I., and Bork, P. (2007). Interactive tree of life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23, 127-128. doi: 10.1093/bioinformatics/btl529
- Li, T., Ogihara, M., and Ma, S. (2004). "On combining multiple clusterings, " in: Proceedings of the Thirteenth ACM Conference on Information and Knowledge Management -CIKM'04. (Washington, DC: ACM Press), 294. Available online at: http://portal.acm.org/citation.cfm?doid=1031171.1031234 (accessed August 21, 2019).
- Lloyd, C. M., Halstead, M. D. B., and Nielsen, P. F. (2004). CellML: its future, present and past. Prog. Biophys. Mol. Biol. 85, 433-450. doi: 10.1016/j.pbiomolbio.2004.01.004
- Longabaugh, W. J. R. (2012). BioTapestry: a tool to visualize the dynamic properties of gene regulatory networks. Methods Mol. Biol. 786, 359-394. doi: 10.1007/978-1-61779-292-2_21
- Lü, L., Jin, C. H., and Zhou, T. (2009). Similarity index based on local paths for link prediction of complex networks. Phys. Rev. E 80:046122. doi: 10.1103/PhysRevE.80.046122
- Luo, W., and Brouwer, C. (2013). Pathview: an R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics 29, 1830-1831. doi: 10.1093/bioinformatics/btt285
- Ma, H.-W., and Zeng, A.-P. (2003). The connectivity structure, giant strong component and centrality of metabolic networks. Bioinform. Oxf. Engl. 19, 1423-1430. doi: 10.1093/bioinformatics/btg177
- Maere, S., Heymans, K., and Kuiper, M. (2005). BiNGO: a cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinform. Oxf. Engl. 21, 3448-3449. doi: 10.1093/bioinformatics/bti551
- Mamano, N., and Hayes, W. B. (2017). SANA: simulated annealing far outperforms many other search algorithms for biological network alignment. Bioinform. Oxf. Engl. 33, 2156-2164. doi: 10.1093/bioinformatics/btx090
- Mangan, S., and Alon, U. (2003). Structure and function of the feed- forward loop network motif. Proc. Natl. Acad. Sci. U.S.A. 100, 11980-11985. doi: 10.1073/pnas.2133841100
- Mangan, S., Zaslaver, A., and Alon, U. (2003). The coherent feedforward loop serves as a sign-sensitive delay element in transcription networks. J. Mol. Biol. 334, 197-204. doi: 10.1016/j.jmb.2003. 09.049
- Marina Meil, ȃ., and David, H. (2001). An experimental comparison of model-based clustering methods. Mach. Learn. 42, 9-29. doi: 10.1023/A:1007648401407
- Martin, S., Brown, W. M., Klavans, R., and Boyack, K. W. (2011). OpenOrd: An Open-Source Toolbox for Large Graph Layout. San Francisco: CA. Available from: http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi= 10.1117/12.871402 (accessed October 25, 2018).
- Matys, V., Fricke, E., Geffers, R., Gössling, E., Haubrock, M., Hehl, R., et al. (2003). TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res. 31, 374-378. doi: 10.1093/nar/gkg108
- McGillivray, P., Clarke, D., Meyerson, W., Zhang, J., Lee, D., Gu, M., et al. (2018). Network analysis as a grand unifier in biomedical data science. Annu. Rev. Biomed. Data Sci. 1, 153-180. doi: 10.1146/annurev-biodatasci-080917-013444
- Meila, M. (2000). Comparing Clustering. University of Washington.
- Merico, D., Isserlin, R., Stueker, O., Emili, A., and Bader, G. D. (2010). Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. PLoS ONE 5:e13984. doi: 10.1371/journal.pone.0013984
- Mi, H., Muruganujan, A., Casagrande, J. T., and Thomas, P. D. (2013). Large-scale gene function analysis with the PANTHER classification system. Nat. Protoc. 8, 1551-1566. doi: 10.1038/nprot.2013.092
- Michael, L. S. A. (2017). DESeq2. Bioconductor. Available online at: https:// bioconductor.org/packages/DESeq2 (accessed December 21, 2019).
- Milenković, T., Ng, W. L., Hayes, W., and PrŽUlj, N. (2010). Optimal network alignment with graphlet degree vectors. Cancer Inform. 9:S4744. doi: 10.4137/CIN.S4744
- Milner-Gulland, E. J. (2012). Interactions between human behaviour and ecological systems. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 270-278. doi: 10.1098/rstb.2011.0175
- Milo, R. (2002). Network motifs: simple building blocks of complex networks. Science 298, 824-827. doi: 10.1126/science.298.5594.824
- Mirkin, B. (2001). Eleven ways to look at the chi-squared coefficient for contingency tables. Am. Stat. 55, 111-120. doi: 10.1198/000313001750358428
- Mootha, V. K., Lindgren, C. M., Eriksson, K.-F., Subramanian, A., Sihag, S., Lehar, J., et al. (2003). PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267-273. doi: 10.1038/ng1180
- Moreau, Y., and Tranchevent, L.-C. (2012). Computational tools for prioritizing candidate genes: boosting disease gene discovery. Nat. Rev. Genet. 13, 523-536. doi: 10.1038/nrg3253
- Morris, J. H., Apeltsin, L., Newman, A. M., Baumbach, J., Wittkop, T., Su, G., et al. (2011). Clustermaker: a multi-algorithm clustering plugin for cytoscape. BMC Bioinform. 12:436. doi: 10.1186/1471-2105-12-436
- Moschopoulos, C. N., Pavlopoulos, G. A., Iacucci, E., Aerts, J., Likothanassis, S., Schneider, R., et al. (2011). Which clustering algorithm is better for predicting protein complexes? BMC Res. Notes 4:549. doi: 10.1186/1756-0500-4-549
- Moulos, P., and Hatzis, P. (2015). Systematic integration of RNA-Seq statistical algorithms for accurate detection of differential gene expression patterns. Nucleic Acids Res. 43:e25. doi: 10.1093/nar/gku1273
- Mrvar, A., and Batagelj, V. (2016). Analysis and visualization of large networks with program package Pajek. Comp. Adapt. Syst. Model 4:6. doi: 10.1186/s40294-016-0017-8
- Mudunuri, U., Che, A., Yi, M., and Stephens, R. M. (2009). bioDBnet: the biological database network. Bioinform. Oxf. Engl. 25, 555-556. doi: 10.1093/bioinformatics/btn654
- Murray-Rust, P., Rzepa, H. S., and Wright, M. (2001). Development of chemical markup language (CML) as a system for handling complex chemical content. N. J. Chem. 618-634. doi: 10.1039/b008780g
- Navlakha, S., and Kingsford, C. (2010). The power of protein interaction networks for associating genes with diseases. Bioinform. Oxf. Engl. 26, 1057-1063. doi: 10.1093/bioinformatics/btq076
- Needleman, S. B., and Wunsch, C. D. (1970). A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48, 443-453. doi: 10.1016/0022-2836(70)90057-4
- Newman, M. E. J., and Girvan, M. (2004). Finding and evaluating community structure in networks. Phys. Rev. E 69:026113. doi: 10.1103/PhysRevE.69.026113
- Ni, J., Koyuturk, M., Tong, H., Haines, J., Xu, R., and Zhang, X. (2016). Disease gene prioritization by integrating tissue-specific molecular networks using a robust multi-network model. BMC Bioinform. 17:453. doi: 10.1186/s12859-016-1317-x
- Nica, A. C., and Dermitzakis, E. T. (2013). Expression quantitative trait loci: present and future. Philos. Trans. R. Soc. B Biol. Sci. 368:20120362. doi: 10.1098/rstb.2012.0362
- O'Donoghue, S. I., Gavin, A.-C., Gehlenborg, N., Goodsell, D. S., Hériché J.-K., Nielsen, C. B., et al. (2010). Visualizing biological data-now and in the future. Nat. Methods 7, S2-S4. doi: 10.1038/nmeth.f.301
- Pafilis, E., Buttigieg, P. L., Ferrell, B., Pereira, E., Schnetzer, J., Arvanitidis, C., et al. (2016). EXTRACT: interactive extraction of environment metadata and term suggestion for metagenomic sample annotation. Database J. Biol. Databases Curat. 2016:baw005. doi: 10.1093/database/baw005
- Parkinson, H., Kapushesky, M., Shojatalab, M., Abeygunawardena, N., Coulson, R., Farne, A., et al. (2007). ArrayExpress-a public database of microarray experiments and gene expression profiles. Nucleic Acids Res. 35, D747-D750. doi: 10.1093/nar/gkl995
- Pavlopoulos, G. A., Hooper, S. D., A., Schneider, R., and Aerts, J. (2011b). Medusa: a tool for exploring and clustering biological networks. BMC Res. Notes 4:384. doi: 10.1186/1756-0500-4-384
- Pavlopoulos, G. A., Iacucci, E., Iliopoulos, I., and Bagos, P. (2013). "Interpreting the omics 'era' data, " in Multimedia Services in Intelligent Environments, eds G. A. Tsihrintzis, M. Virvou, and L. C. Jain (Heidelberg: Springer International Publishing), 79-100. Available online at: http://link.springer.com/10.1007/978- 3-319-00375-7_6 (accessed January 13, 2019).
- Pavlopoulos, G. A., Kontou, P. I., Pavlopoulou, A., Bouyioukos, C., Markou, E., and Bagos, P. G. (2018). Bipartite graphs in systems biology and medicine: a survey of methods and applications. GigaScience 7, 1-31. doi: 10.1093/gigascience/giy014
- Pavlopoulos, G. A., Malliarakis, D., Papanikolaou, N., Theodosiou, T., Enright, A. J., and Iliopoulos, I. (2015). Visualizing genome and systems biology: technologies, tools, implementation techniques and trends, past, present and future. GigaScience 4:38. doi: 10.1186/s13742-015-0077-2
- Pavlopoulos, G. A., O'Donoghue, S. I., Satagopam, V. P., Soldatos, T. G., Pafilis, E., and Schneider, R. (2008b). Arena3D: visualization of biological networks in 3D. BMC Syst. Biol. 2:104. doi: 10.1186/1752-0509-2-104
- Pavlopoulos, G. A., Paez-Espino, D., Kyrpides, N. C., and Iliopoulos, I. (2017). Empirical comparison of visualization tools for larger-scale network analysis. Adv. Bioinforma. 2017:1278932. doi: 10.1155/2017/1278932
- Pavlopoulos, G. A., Promponas, V. J., Ouzounis, C. A., and Iliopoulos, I. (2014). Biological information extraction and co-occurrence analysis. Methods Mol. Biol. 1159, 77-92. doi: 10.1007/978-1-4939-0709-0_5
- Pavlopoulos, G. A., Secrier, M., Moschopoulos, C. N., Soldatos, T. G., Kossida, S., Aerts, J., et al. (2011a). Using graph theory to analyze biological networks. BioData Min. 4:10. doi: 10.1186/1756-0381-4-10
- Pavlopoulos, G. A., Soldatos, T. G., Barbosa-Silva, A., and Schneider, R. (2010). A reference guide for tree analysis and visualization. BioData Min. 3:1. doi: 10.1186/1756-0381-3-1
- Pavlopoulos, G. A., Wegener, A.-L., and Schneider, R. (2008a). A survey of visualization tools for biological network analysis. BioData Min. 1:12. doi: 10.1186/1756-0381-1-12
- Pearson, W. R. (2000). Flexible sequence similarity searching with the FASTA3 program package. Methods Mol. Biol. 132, 185-219. doi: 10.1385/1-59259-192-2:185
- Peixoto, T. P. (2017). The Graph-Tool Python Library. Figshare. Available from: https://figshare.com/articles/graph_tool/1164194 (accessed December 19, 2019).
- Peri, S., Navarro, J. D., Amanchy, R., Kristiansen, T. Z., Jonnalagadda, C. K., Surendranath, V., et al. (2003). Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res. 13, 2363-2371. doi: 10.1101/gr.1680803
- Pillich, R. T., Chen, J., Rynkov, V., Welker, D., and Pratt, D. (2017). NDEx: a community resource for sharing and publishing of biological networks. Methods Mol. Biol. 1558, 271-301. doi: 10.1007/978-1-4939-6783-4_13
- Platig, J., Castaldi, P. J., DeMeo, D., and Quackenbush, J. (2016). Bipartite community structure of eQTLs. PLoS Comput Biol. 12:e1005033. doi: 10.1371/journal.pcbi.1005033
- Przulj, N., Corneil, D. G., and Jurisica, I. (2004). Modeling interactome: scale-free or geometric? Bioinform. Oxf. Engl. 20, 3508-3515. doi: 10.1093/bioinformatics/bth436
- Rand, W. M. (1971). Objective Criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66, 846-850. doi: 10.1080/01621459.1971.10482356
- Rao, V. S., Srinivas, K., Sujini, G. N., and Kumar, G. N. S. (2014)Protein-protein interaction detection: methods and analysis. Int. J. Proteomics 2014:1-12. doi: 10.1155/2014/147648
- Raudvere, U., Kolberg, L., Kuzmin, I., Arak, T., Adler, P., Peterson, H., et al. (2019). g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 47, W191-W198. doi: 10.1093/nar/gkz369
- Reimand, J., Isserlin, R., Voisin, V., Kucera, M., Tannus-Lopes, C., Rostamianfar, A., et al. (2019). Pathway enrichment analysis and visualization of omics data using g:Profiler, GSEA, cytoscape and enrichmentmap. Nat. Protoc. 14, 482-517. doi: 10.1038/s41596-018-0103-9
- Reisig, W. (1985). Petri Nets: An Introduction. Berlin, NY: Springer- Verlag. 161 (EATCS monographs on theoretical computer science). doi: 10.1007/978-3-642-69968-9
- Rodchenkov, I., Babur, O., Luna, A., Aksoy, B. A., Wong, J. V., Fong, D., et al. (2019). Pathway commons 2019 update: integration, analysis and exploration of pathway data. Nucleic Acids Res. 48, D489-D497. doi: 10.1093/nar/ gkz946
- Romanuk, T. N., Vogt, R. J., Young, A., Tuck, C., and Carscallen, M. W. (2010). Maintenance of positive diversity-stability relations along a gradient of environmental stress. PLoS ONE 5:e10378. doi: 10.1371/journal.pone.0010378
- Sabidussi, G. (1966). The centrality of a graph. Psychometrika 31, 581-603. doi: 10.1007/BF02289527
- Saito, R., Smoot, M. E., Ono, K., Ruscheinski, J., Wang, P.-L., Lotia, S., et al. (2012). A travel guide to cytoscape plugins. Nat. Methods 9, 1069-1076. doi: 10.1038/nmeth.2212
- Saitou, N., and Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
- Santolini, M., and Barabási, A.-L. (2018). Predicting perturbation patterns from the topology of biological networks. Proc. Natl. Acad. Sci. U.S.A. 115, E6375-E6383. doi: 10.1073/pnas.1720589115
- Satagopam, V. P., Theodoropoulou, M. C., Stampolakis, C. K., Pavlopoulos, G. A., Papandreou, N. C., Bagos, P. G., et al. (2010). GPCRs, G-proteins, effectors and their interactions: human-gpDB, a database employing visualization tools and data integration techniques. Database J. Biol. Databases Curat. 2010:baq019. doi: 10.1093/database/baq019
- Schreiber, F., and Schwöbbermeyer, H. (2005). MAVisto: a tool for the exploration of network motifs. Bioinform. Oxf. Engl. 21, 3572-3574. doi: 10.1093/bioinformatics/bti556
- Secrier, M., Pavlopoulos, G. A., Aerts, J., and Schneider, R. (2012). Arena3D: visualizing time-driven phenotypic differences in biological systems. BMC Bioinform. 13:45. doi: 10.1186/1471-2105-13-45
- Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., et al. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498-2504. doi: 10.1101/gr.1239303
- Sharan, R., Suthram, S., Kelley, R. M., Kuhn, T., McCuine, S., Uetz, P., et al. (2005). Conserved patterns of protein interaction in multiple species. Proc. Natl. Acad. Sci. U.S.A. 102, 1974-1979. doi: 10.1073/pnas.0409522102
- Sharan, R., Ulitsky, I., and Shamir, R. (2007). Network-based prediction of protein function. Mol. Syst. Biol. 3:88. doi: 10.1038/msb4100129
- Shen-Orr, S. S., Milo, R., Mangan, S., and Alon, U. (2002). Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet. 31, 64-68. doi: 10.1038/ng881
- Siebourg-Polster, J., Mudrak, D., Emmenlauer, M., Rämö. P., Dehio, C., Greber, U., et al. (2015). NEMix: single-cell nested effects models for probabilistic pathway stimulation. PLoS Comput. Biol. 11:e1004078. doi: 10.1371/journal.pcbi.1004078
- Slenter, D. N., Kutmon, M., Hanspers, K., Riutta, A., Windsor, J., Nunes, N., et al. (2018). WikiPathways: a multifaceted pathway database bridging metabolomics to other omics research. Nucleic Acids Res. 46, D661-D667. doi: 10.1093/nar/gkx1064
- Smith, T. F., and Waterman, M. S. (1981). Identification of common molecular subsequences. J. Mol. Biol. 147, 195-197. doi: 10.1016/0022-2836(81)90087-5
- Smola, A. J., and Kondor, R. (2003). "Kernels and regularization on graphs, " in Learning Theory and Kernel Machines, eds B. Schölkopf and M. K. Warmuth (Berlin: Springer Berlin Heidelberg), 144-158. Available online at: http://link. springer.com/10.1007/978-3-540-45167-9_12 (accessed December 17, 2019).
- Sommer, B. (2019). The CELLmicrocosmos tools: a small history of java-based cell and membrane modelling open source software development. J. Integr. Bioinform. 16:20190057. doi: 10.1515/jib-2019-0057
- Sonawane, A. R., Weiss, S. T., Glass, K., and Sharma, A. (2019). Network medicine in the age of biomedical big data. Front. Genet. 10:294. doi: 10.3389/fgene.2019.00294
- Spirin, V., and Mirny, L. A. (2003). Protein complexes and functional modules in molecular networks. Proc. Natl. Acad. Sci. U.S.A. 100, 12123-12128. doi: 10.1073/pnas.2032324100
- Stark, C., Breitkreutz, B.-J., Reguly, T., Boucher, L., Breitkreutz, A., and Tyers, M. (2006). BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 34, D535-D539. doi: 10.1093/nar/gkj109
- Stone, L., Simberloff, D., and Artzy-Randrup, Y. (2019). Network motifs and their origins. PLoS Comput. Biol. 15:e1006749. doi: 10.1371/journal.pcbi.1006749
- Subramanian, A., Tamayo, P., Mootha, K., Mukherjee, S., Ebert, B. L., Gillette, M. A., et al. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U.S.A. 102, 15545-15550. doi: 10.1073/pnas.0506580102
- Szklarczyk, D., and Jensen, L. J. (2015). "Protein-protein interaction databases, " in Protein-Protein Interactions, eds C. L. Meyerkord and H. Fu (New York, NY: Springer New York), 39-56.
- Szklarczyk, D., Santos, A., von Mering, C., Jensen, L. J., Bork, P., and Kuhn, M. (2016). STITCH 5: augmenting protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Res. 44, D380-D384. doi: 10.1093/nar/gkv1277
- Theocharidis, A., van Dongen, S., Enright, A. J., and Freeman, T. C. (2009). Network visualization and analysis of gene expression data using biolayout express(3D). Nat. Protoc. 4, 1535-1550. doi: 10.1038/nprot.2009.177
- Theodosiou, T., Efstathiou, G., Papanikolaou, N., Kyrpides, N. C., Bagos, P. G., Iliopoulos, I., et al. (2017). NAP: The network analysis profiler, a web tool for easier topological analysis and comparison of medium-scale biological networks. BMC Res. Notes 10:278. doi: 10.1186/s13104-017-2607-8
- Thimm, O., Bläsing, O., Gibon, Y., Nagel, A., Meyer, S., Krüger, P., et al. (2004). MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. Cell Mol. Biol. 37, 914-939. doi: 10.1111/j.1365-313X.2004.02016.x
- Thomas, R., and Portier, C. J. (2013). Gene expression networks. Methods Mol. Biol. 930, 165-178. doi: 10.1007/978-1-62703-059-5_7
- Tian, W., and Samatova, N. F. (2008). "Pairwise alignment of interaction networks by fast identification of maximal conserved patterns, " in Biocomputing 2009 (Kohala Coast, HI: World Scientific), 99-110. Available online at: http:// www.worldscientific.com/doi/abs/10.1142/9789812836939_0010 (accessed December 16, 2019).
- Tipney, H., and Hunter, L. (2010). An introduction to effective use of enrichment analysis software. Hum. Genomics 4, 202-206. doi: 10.1186/1479-7364-4-3-202
- Torres, J. M., Gamazon, E. R., Parra, E. J., Below, J. E., Valladares-Salgado, A., Wacher, N., et al. (2014). Cross-tissue and tissue-specific eQTLs: partitioning the heritability of a complex trait. Am. J. Hum. Genet. 95, 521-534. doi: 10.1016/j.ajhg.2014.10.001
- Towfic, F., Greenlee, M. H. W., and Honavar, V. (2009). "Aligning biomolecular networks using modular graph kernels, " in Algorithms in Bioinformatics, eds S. L. Salzberg and T. Warnow (Berlin: Springer Berlin Heidelberg), 345-361. Available online at: http://link.springer.com/10.1007/978-3-642-04241-6_29 (accessed December 11, 2019).
- Tripathi, K. P., Evangelista, D., Zuccaro, A., and Guarracino, M. R. (2015). Transcriptator: an automated computational pipeline to annotate assembled reads and identify non coding RNA. PLoS ONE 10:e0140268. doi: 10.1371/journal.pone.0140268
- Ulgen, E., Ozisik, O., and Sezerman, O. U. (2019). pathfindR: An R package for comprehensive identification of enriched pathways in omics data through active subnetworks. Front. Genet. 10:858. doi: 10.3389/fgene.2019.
- Ulrich, L. E., and Zhulin, I. B. (2007). MiST: a microbial signal transduction database. Nucleic Acids Res. 35, D386-D390. doi: 10.1093/nar/gkl932
- Vázquez, A., Dobrin, R., Sergi, D., Eckmann, J.-P., Oltvai, Z. N., and Barabási, A.- L. (2004). The topological relationship between the large-scale attributes and local interaction patterns of complex networks. Proc. Natl. Acad. Sci. U.S.A. 101, 17940-17945. doi: 10.1073/pnas.0406024101
- Wagner, S., and Wagner, D. (2007). Comparing Clusterings -An Overview. Karlsruhe. Available online at: https://publikationen.bibliothek.kit.edu/ 1000011477 (accessed July 24, 2019).
- Watts, D. J., and Strogatz, S. H. (1998). Collective dynamics of "small-world" networks. Nature 393, 440-442. doi: 10.1038/30918
- Wernicke, S., and Rasche, F. (2006). FANMOD: a tool for fast network motif detection. Bioinform. Oxf. Engl. 22, 1152-1153. doi: 10.1093/bioinformatics/btl038
- Xenarios, I., Rice, D. W., Salwinski, L., Baron, M. K., Marcotte, E. M., and Eisenberg, D. (2000). DIP: the database of interacting proteins. Nucleic Acids Res. 28, 289-291. doi: 10.1093/nar/28.1.289
- Xu, R., and Wunsch,II. D. (2005). Survey of clustering algorithms. IEEE Trans. Neural Netw. 16, 645-678. doi: 10.1109/TNN.2005.845141
- Yang, Z. (1996). Phylogenetic analysis using parsimony and likelihood methods. J. Mol. Evol. 42, 294-307. doi: 10.1007/BF02198856
- Yevshin, I., Sharipov, R., Kolmykov, S., Kondrakhin, Y., and Kolpakov, F. (2019). GTRD: a database on gene transcription regulation-2019 update. Nucleic Acids Res. 47, D100-D105. doi: 10.1093/nar/gky1128
- Yifan, H. (2005). Efficient, high-quality force-directed graph drawing. Math. J. 10, 37-71. Available online at: http://asus.myds.me:6543/paper/ktall/37%20- %201984%20-%20Efficient,%20High-Quality%20Force-Directed%20Graph %20Drawing.pdf
- Yook, S.-H., Oltvai, Z. N., and Barabási, A.-L. (2004). Functional and topological characterization of protein interaction networks. Proteomics 4, 928-942. doi: 10.1002/pmic.200300636
- Yue, X., Wang, Z., Huang, J., Parthasarathy, S., Moosavinasab, S., Huang, Y., et al. (2019). Graph embedding on biomedical networks: methods, applications and evaluations. Cowen L Ed. Bioinform. btz718. doi: 10.1093/bioinformatics/btz718
- Zampelli, S., Deville, Y., and Solnon, C. (2010). Solving subgraph isomorphism problems with constraint programming. Constraints 15, 327-353. doi: 10.1007/s10601-009-9074-3
- Zhang, H., Liang, Y., Han, S., Peng, C., and Li, Y. (2019). Long noncoding RNA and protein interactions: from experimental results to computational models based on network methods. Int. J. Mol. Sci. 20:1284. doi: 10.3390/ijms200 61284
- Zhou, C. (2016). A Survey of Edge Bundling Methods for Graph Visualization. Zhou, H., Panpan, X.u, Yuan, X., and Qu, H. (2013). Edge bundling in information visualization. Tsinghua. Sci. Technol. 18, 145-156. doi: 10.1109/TST.2013.6509098