Academia.eduAcademia.edu

Outline

A Guide to Conquer the Biological Network Era Using Graph Theory

Frontiers in Bioengineering and Biotechnology

https://doi.org/10.3389/FBIOE.2020.00034

Abstract

Networks are one of the most common ways to represent biological systems as complex sets of binary interactions or relations between different bioentities. In this article, we discuss the basic graph theory concepts and the various graph types, as well as the available data structures for storing and reading graphs. In addition, we describe several network properties and we highlight some of the widely used network topological features. We briefly mention the network patterns, motifs and models, and we further comment on the types of biological and biomedical networks along with their corresponding computer-and human-readable file formats. Finally, we discuss a variety of algorithms and metrics for network analyses regarding graph drawing, clustering, visualization, link prediction, perturbation, and network alignment as well as the current state-of-the-art tools. We expect this review to reach a very broad spectrum of readers varying from experts to beginners while encouraging them to enhance the field further.

References (221)

  1. Adai, A. T., Date, S. V., Wieland, S., and Marcotte, E. M. (2004). LGL: creating a map of protein function with an algorithm for visualizing very large biological networks. J. Mol. Biol. 340, 179-190. doi: 10.1016/j.jmb.2004.04.047
  2. Al-Anzi, B., Arpp, P., Gerges, S., Ormerod, C., Olsman, N., and Zinn, K. (2015). Experimental and computational analysis of a large protein network that controls fat storage reveals the design principles of a signaling network. PLoS Comput. Biol. 11:e1004264. doi: 10.1371/journal.pcbi.1004264
  3. Alexander, S., and Joydeep, G. (2003). Cluster ensembles-a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3, 583-617. doi: 10.1162/153244303321897735
  4. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local alignment search tool. J. Mol. Biol. 215, 403-410. doi: 10.1016/S0022-2836(05)80360-2
  5. Ana, L. N. F., and Jain, A. K. (2003). "Robust data clustering, " in: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003
  6. Proceedings (Madison, WI: IEEE Comput. Soc), II-128-II-133. Available online at: http://ieeexplore.ieee.org/document/1211462/ (accessed August 21, 2019).
  7. Athanasiadis, E. I., Bourdakou, M. M., and Spyrou, G. M. (2015). Zoomout: analyzing multiple networks as single nodes. IEEE/ACM Trans. Comput. Biol. Bioinform. 12, 1213-1216. doi: 10.1109/TCBB.2015. 2424411
  8. Auber, D., Archambault, D., Bourqui, R., Delest, M., Dubois, J., Lambert, A., et al. (2017). "Tulip 5, " in Encyclopedia of Social Network Analysis and Mining, eds R. Alhajj and J. Rokne (New York, NY: Springer New York), 1-28.
  9. Azad, A., Pavlopoulos, G. A., Ouzounis, C. A., Kyrpides, N. C., and Buluç, A. (2018). HipMCL: a high-performance parallel implementation of the Markov clustering algorithm for large-scale networks. Nucleic Acids Res. 46:e33. doi: 10.1093/nar/gkx1313
  10. Bader, G. D., Betel, D., and Hogue, C. W. (2003). BIND: the biomolecular interaction network database. Nucleic Acids Res. 31, 248-250. doi: 10.1093/nar/gkg056
  11. Bader, G. D., and Hogue, C. W. (2003). An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 4:2. doi: 10.1186/1471-2105-4-2
  12. Barabasi, A.-L., and Albert, R. (1999). Emergence of scaling in random networks. Science 286, 509-512. doi: 10.1126/science.286.5439.509
  13. Barabási, A.-L., and Oltvai, Z. N. (2004). Network biology: understanding the cell's functional organization. Nat. Rev. Genet. 5, 101-113. doi: 10.1038/nrg1272
  14. Barrett, T., Wilhite, S. E., Ledoux, P., Evangelista, C., Kim, I. F., Tomashevsky, M., et al. (2013). NCBI GEO: archive for functional genomics data sets-update. Nucleic Acids Res. 41, D991-D995. doi: 10.1093/nar/gks1193
  15. Bastian, M., Heymann, S., and Jacomy, M. (2009). "Gephi: an open source software for exploring and manipulating networks, " in International AAAI Conference on Weblogs and Social Media. Available online at: http://www.aaai.org/ocs/index. php/ICWSM/09/paper/view/154
  16. Baum, B. R. (1989). PHYLIP: Phylogeny inference package. version 3.2. joel felsenstein. Q. Rev. Biol. 64, 539-41. doi: 10.1086/416571
  17. Bindea, G., Mlecnik, B., Hackl, H., Charoentong, P., Tosolini, M., Kirilovsky, A., et al. (2009). ClueGO: a cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25, 1091-1093. doi: 10.1093/bioinformatics/btp101
  18. Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. (2008). Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008:P10008. doi: 10.1088/1742-5468/2008/10/P10008
  19. Bollobás, B. (2001). Random Graphs, 2nd Edn. Cambridge, NY: Cambridge University Press, 498. doi: 10.1017/CBO9780511814068
  20. Bonacich, P. (1987). Power and centrality: a family of measures. Am. J. Sociol. 92, 1170-1182. doi: 10.1086/228631
  21. Bonnici, V., Caro, G. D., Constantino, G., Liuni, S., D'Elia, D., Bombieri, N., et al. (2018). Arena-Idb: a platform to build human non-coding RNA interaction networks. BMC Bioinform. 19 (Suppl. 10):350. doi: 10.1186/s12859-018-2298-8
  22. Brandes, U., Eiglsperger, M., Lerner, J., and Pich, C. (2017). Graph Markup Language (GraphML). Boca Raton, FL: Taylor & Francis, CRC Press, 517-541.
  23. Breitkreutz, B.-J., Stark, C., and Tyers, M. (2002). Osprey: a network visualization system. Genome Biol. 3:PREPRINT0012. doi: 10.1186/gb-2002-3-12-preprint0012
  24. Brohée, S., Faust, K., Lima-Mendez, G., Sand, O., Janky, R., Vanderstocken, G., et al. (2008). NeAT: a toolbox for the analysis of biological networks, clusters, classes and pathways. Nucleic Acids Res. 36, W444-W451. doi: 10.1093/nar/ gkn336
  25. Brohée, S., and van Helden, J. (2006). Evaluation of clustering algorithms for protein-protein interaction networks. BMC Bioinform. 7:488. doi: 10.1186/1471-2105-7-488
  26. Chaouiya, C. (2007). Petri net modelling of biological networks. Brief Bioinform. 8, 210-219. doi: 10.1093/bib/bbm029
  27. Chatr-aryamontri, A., Ceol, A., Palazzi, L. M., Nardelli, G., Schneider, M. V., Castagnoli, L., et al. (2007). MINT: the molecular INTeraction database. Nucleic Acids Res. 35, D572-D574. doi: 10.1093/nar/gkl950
  28. Conant, G. C., and Wagner, A. (2003). Convergent evolution of gene circuits. Nat. Genet. 34, 264-266. doi: 10.1038/ng1181
  29. Croft, D. P., Krause, J., and James, R. (2004). Social networks in the guppy (poecilia reticulata). Proc. Biol. Sci. 271 (Suppl. 6):S516-S519. doi: 10.1098/rsbl.2004.0206
  30. Dagum, L., and Menon, R. (1998). Open MP: an industry standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5, 46-55. doi: 10.1109/99.660313
  31. Danon, L., Ford, A. P., House, T., Jewell, C. P., Keeling, M. J., Roberts, G. O., et al. (2011). Networks and the epidemiology of infectious disease. Interdiscip. Perspect Infect. Dis. 2011, 1-28. doi: 10.1155/2011/284909
  32. Darzi, Y., Letunic, I., Bork, P., and Yamada, T. (2018). iPath3.0: interactive pathways explorer v3. Nucleic Acids Res. 46, W510-W513. doi: 10.1093/nar/gky299
  33. Delmas, E., Besson, M., Brice, M.-H., Burkle, L. A., Dalla Riva, G. V., Fortin, M.-J., et al. (2019). Analysing ecological networks of species interactions: analyzing ecological networks. Biol. Rev. 94, 16-36. doi: 10.1111/brv.12433
  34. Demir, E., Cary, M. P., Paley, S., Fukuda, K., Lemer, C., Vastrik, I., et al. (2010). The BioPAX community standard for pathway data sharing. Nat. Biotechnol. 28, 935-942. doi: 10.1038/nbt.1666
  35. Doncheva, N. T., Assenov, Y., Domingues, F. S., and Albrecht, M. (2012). Topological analysis and interactive visualization of biological networks and protein structures. Nat. Protoc. 7, 670-685. doi: 10.1038/nprot.2012.004
  36. Dongen, S. (2000). Performance Criteria for Graph Clustering and Markov Cluster Experiments. National research institute for mathematics and computer science.
  37. Eden, E., Navon, R., Steinfeld, I., Lipson, D., and Yakhini, Z. (2009). GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinform. 10:48. doi: 10.1186/1471-2105-10-48
  38. Ekre, A. R., and Mante, R. V. (2016). "Genome sequence alignment tools: a review, " in 2016 2nd International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB) (Chennai: IEEE), 677-681. Available online at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper. htm?arnumber=7538378 (accessed July 18, 2019).
  39. Enright, A. J., Van Dongen, S., and Ouzounis, C. A. (2002). An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 30, 1575-1584. doi: 10.1093/nar/30.7.1575
  40. Fabregat, A., Jupe, S., Matthews, L., Sidiropoulos, K., Gillespie, M., Garapati, P., et al. (2018). The reactome pathway knowledgebase. Nucleic Acids Res. 46, D649-D655. doi: 10.1093/nar/gkx1132
  41. Fagny, M., Paulson, J. N., Kuijjer, M. L., Sonawane, A. R., Chen, C.-Y., Lopes- Ramos, C. M., et al. (2017). Exploring regulation in tissues with eQTL networks. Proc. Natl. Acad. Sci. U.S.A. 114, E7841-E7850. doi: 10.1073/pnas.1707375114
  42. Ferro, A., Giugno, R., Pigola, G., Pulvirenti, A., Skripin, D., Bader, G. D., et al. (2007). NetMatch: a cytoscape plugin for searching biological networks. Bioinform. Oxf. Engl. 23, 910-912. doi: 10.1093/bioinformatics/btm032
  43. Flannick, J., Novak, A., Do, C. B., Srinivasan, B. S., and Batzoglou, S. (2008). "Automatic parameter learning for multiple network alignment, " in Research in Computational Molecular Biology, eds M. Vingron and L. Wong (Berlin: Springer Berlin Heidelberg), 214-231. Available online at: http://link.springer.com/10.1007/978-3-540-78839-3_19 (accessed December 16, 2019).
  44. Forum, M. P. I. (1994). MPI: A Message-Passing Interface. Oregon Graduate Institute School of Science & Engineering. Report No.: 890839.
  45. Fowlkes, E. B., and Mallows, C. L. (1983). A method for comparing two hierarchical clusterings. J. Am. Stat. Assoc. 78, 553-569. doi: 10.1080/01621459.1983.10478008
  46. Franceschini, A., Szklarczyk, D., Frankild, S., Kuhn, M., Simonovic, M., Roth, A., et al. (2013). STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 41, D808-D815. doi: 10.1093/nar/gks1094
  47. Franz, M., Lopes, C. T., Huck, G., Dong, Y., Sumer, O., and Bader, G. D. (2016). Cytoscape.js: a graph theory library for visualisation and analysis. Bioinform. Oxf. Engl. 32, 309-311. doi: 10.1093/bioinformatics/btv557
  48. Franz, M., Rodriguez, H., Lopes, C., Zuberi, K., Montojo, J., Bader, G. D., et al. (2018). GeneMANIA update 2018. Nucleic Acids Res. 46, W60-W64. doi: 10.1093/nar/gky311
  49. Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry 40, 35-41. doi: 10.2307/3033543
  50. Frey, B. J., and Dueck, D. (2007). Clustering by passing messages between data points. Science 315, 972-976. doi: 10.1126/science.1136800
  51. Fruchterman, T. M. J., and Reingold, E. M. (1991). Graph drawing by force-directed placement. Softw. Pract. Exp. 21, 1129-1164. doi: 10.1002/spe.4380211102
  52. Fung, B. C. M., Wang, K., and Ester, M. (2003). "Hierarchical document clustering using frequent itemsets, " in Proceedings of the 2003 SIAM International Conference on Data Mining (San Francisco, CA: Society for Industrial and Applied Mathematics), 59-70. Available online at: https://epubs.siam.org/doi/10.1137/1.9781611972733.6 (accessed September 2, 2019).
  53. Gabor, C., and Nepusz, T. (2006). The Igraph Software Package for Complex Network Research. InterJournal;Complex Systems:1695.
  54. Gagescu, R. (2001). The visible cell project. Nat. Rev. Mol. Cell Biol. 2, 231-231. doi: 10.1038/35067039
  55. Gagneur, J., Jackson, D. B., and Casari, G. (2003). Hierarchical analysis of dependency in metabolic networks. Bioinformatics 19, 1027-1034. doi: 10.1093/bioinformatics/btg115
  56. Gavin, A.-C., Aloy, P., Grandi, P., Krause, R., Boesche, M., Marzioch, M., et al. (2006). Proteome survey reveals modularity of the yeast cell machinery. Nature 440, 631-636. doi: 10.1038/natur
  57. Gehlenborg, N., O'Donoghue, S. I., Baliga, N. S., Goesmann, A., Hibbs, M. A., Kitano, H., et al. (2010). Visualization of omics data for systems biology. Nat. Methods 7, S56-S68. doi: 10.1038/nmeth.1436
  58. Gene Ontology Consortium (2004). The gene ontology (GO) database and informatics resource. Nucleic Acids Res. 32, 258D-261D. doi: 10.1093/nar/gkh036
  59. Gentleman, R. C., Carey, V. J., Bates, D. M., Bolstad, B., Dettling, M., Dudoit, S., et al. (2004). Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5:R80. doi: 10.1186/gb-2004-5-10-r80
  60. Gioutlakis, A., Klapa, M. I., and Moschonas, N. K. (2017). PICKLE 2.0: a human protein-protein interaction meta-database employing data integration via genetic information ontology. PLoS ONE 12:e0186039. doi: 10.1371/journal.pone.0186039
  61. Goh, K.-I., Cusick, M. E., Valle, D., Childs, B., Vidal, M., and Barabási, A.-L. (2007). The human disease network. Proc. Natl. Acad. Sci. U.S.A. 104, 8685-8690. doi: 10.1073/pnas.0701361104
  62. Golding, B., and Felsenstein, J. (1990). A maximum likelihood approach to the detection of selection from a phylogeny. J. Mol. Evol. 31, 511-523. doi: 10.1007/BF02102078
  63. Gottlieb, A., Stein, G. Y., Ruppin, E., and Sharan, R. (2011). PREDICT: a method for inferring novel drug indications with application to personalized medicine. Mol. Syst. Biol. 7:496. doi: 10.1038/msb.2011.26
  64. Gu, S., Johnson, J., Faisal, F. E., and Milenković T. (2018). From homogeneous to heterogeneous network alignment via colored graphlets. Sci. Rep. 8:12524. doi: 10.1038/s41598-018-30831-w
  65. Guns, R. (2014). "Link prediction, " in Measuring Scholarly Impact, eds Y. Ding, R. Rousseau, and D. Wolfram (Cham: Springer International Publishing), 35-55. Available online at: http://link.springer.com/10.1007/978-3-319-10377- 8_2 (accessed December 17, 2019).
  66. Hagberg, A., Schult, D., and Swart, P. (2008). "Exploring network structure, dynamics, and function using network, " in Proceedings of the 7th Python in Science Conference (Pasadena, CA: SciPy), 11-15.
  67. Hage, P., and Harary, F. (1995). Eccentricity and centrality in networks. Soc. Netw. 17, 57-63. doi: 10.1016/0378-8733(94)00248-9
  68. Han, H., Cho, J.-W., Lee, S., Yun, A., Kim, H., Bae, D., et al. (2018). TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res. 46, D380-D386. doi: 10.1093/nar/gkx1013
  69. Han, H., Lee, S., and Lee, I. (2019). NGSEA: network-based gene set enrichment analysis for interpreting gene expression phenotypes with functional gene sets. Mol. Cells 42, 579-588. doi: 10.1101/636498
  70. Hermjakob, H., Montecchi-Palazzi, L., Bader, G., Wojcik, J., Salwinski, L., Ceol, A., et al. (2004b). The HUPO PSI's molecular interaction format-a community standard for the representation of protein interaction data. Nat. Biotechnol. 22, 177-183. doi: 10.1038/nbt926
  71. Hermjakob, H., Montecchi-Palazzi, L., Lewington, C., Mudali, S., Kerrien, S., Orchard, S., et al. (2004a). IntAct: an open source molecular interaction database. Nucleic Acids Res. 32, D452-D455. doi: 10.1093/nar/gkh052
  72. Himmelstein, D. S., and Baranzini, S. E. (2015). Heterogeneous network edge prediction: a data integration approach to prioritize disease- associated genes. PLoS Comput. Biol. 11:e1004259. doi: 10.1371/journal.pcbi. 1004259
  73. Holding, A. N., Cook, H. V., and Markowetz, F. (2019). Data generation and network reconstruction strategies for single cell transcriptomic profiles of CRISPR-mediated gene perturbations. Biochim. Biophys. Acta BBA Gene Regul. Mech. 20:194441. doi: 10.1016/j.bbagrm.2019.194441
  74. Hu, Z., Hung, J.-H., Wang, Y., Chang, Y.-C., Huang, C.-L., Huyck, M., et al. (2009). VisANT 3.5: multi-scale network visualization, analysis and inference based on the gene ontology. Nucleic Acids Res. W115-W121. doi: 10.1093/nar/gkp406
  75. Huang, D. W., Sherman, B. T., and Lempicki, R. A. (2009a). Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1-13. doi: 10.1093/nar/gkn923
  76. Huang, D. W., Sherman, B. T., and Lempicki, R. A. (2009b). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44-57. doi: 10.1038/nprot.2008.211
  77. Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H., et al. (2003). The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinform. Oxf. Engl. 19, 524-531. doi: 10.1093/bioinformatics/btg015
  78. Hung, J.-H., Yang, T.-H., Hu, Z., Weng, Z., and DeLisi, C. (2012). Gene set enrichment analysis: performance evaluation and usage guidelines. Brief Bioinform. 13, 281-291. doi: 10.1093/bib/bbr049
  79. Huson, D. H., Richter, D. C., Rausch, C., Dezulian, T., Franz, M., and Rupp, R. (2007). Dendroscope: an interactive viewer for large phylogenetic trees. BMC Bioinform. 8:460. doi: 10.1186/1471-2105-8-460
  80. Huson, D. H., Rupp, R., and Scornavacca, C. (2010). Phylogenetic Networks: Concepts, Algorithms and Applications. Cambridge: Cambridge University Press. Available online at: http://ebooks.cambridge.org/ref/id/ CBO9780511974076 (accessed July 22, 2019).
  81. Ings, T. C., Montoya, J. M., Bascompte, J., Blüthgen, N., Brown, L., Dormann, C. F., et al. (2009). Ecological networks-beyond food webs. J. Anim. Ecol. 78, 253-269. doi: 10.1111/j.1365-2656.2008.01460.x
  82. Iragne, F., Nikolski, M., Mathieu, B., Auber, D., and Sherman, D. (2005). ProViz: protein interaction visualization and exploration. Bioinform. Oxf. Engl. 21, 272-274. doi: 10.1093/bioinformatics/bth494
  83. Ito, T., Shimbo, M., Kudo, T., and Matsumoto, Y. (2005). "Application of kernels to link analysis, " in Proceeding of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining -KDD'05 (Chicago, IL: ACM Press), 586. Available online at: http://portal.acm.org/citation.cfm?doid= 1081870.1081941 (accessed December 17, 2019).
  84. Jalili, M., Salehzadeh-Yazdi, A., Gupta, S., Wolkenhauer, O., Yaghmaie, M., Resendis-Antonio, O., et al. (2016). Evolution of centrality measurements for the detection of essential proteins in biological networks. Front. Physiol. 7:375. doi: 10.3389/fphys.2016.00375
  85. Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N., and Barabási, A. L. (2000). The large-scale organization of metabolic networks. Nature 407, 651-654. doi: 10.1038/35036627
  86. Jiang, P., and Singh, M. (2010). SPICi: a fast clustering algorithm for large biological networks. Bioinform. Oxf. Engl. 26, 1105-1111. doi: 10.1093/bioinformatics/btq078
  87. Junker, B. H., and Schreiber, F. (eds) (2008). Analysis of Biological Networks, Wiley Series on Bioinformatics (Hoboken, NJ: Wiley-Interscience), 346. doi: 10.1002/9780470253489
  88. Kalaev, M., Smoot, M., Ideker, T., and Sharan, R. (2008). NetworkBLAST: comparative analysis of protein networks. Bioinformatics 24, 594-596. doi: 10.1093/bioinformatics/btm630
  89. Kandasamy, K., Mohan, S., Raju, R., Keerthikumar, S., Kumar, G. S. S., Venugopal, A. K., et al. (2010). NetPath: a public resource of curated signal transduction pathways. Genome Biol. 11:R3. doi: 10.1186/gb-2010-11-1-r3
  90. Kanehisa, M., and Goto, S. (2000). KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27-30. doi: 10.1093/nar/28.1.27
  91. Kashtan, N., Itzkovitz, S., Milo, R., and Alon, U. (2004). Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs. Bioinform. Oxf. Engl. 20, 1746-1758. doi: 10.1093/bioinformatics/bth163
  92. Kavurucu, Y. (2015). A comparative study on network motif discovery algorithms. Int. J. Data Min. Bioinforma.11, 180-204. doi: 10.1504/IJDMB.2015.066777
  93. Kiełbasa, S. M., Wan, R., Sato, K., Horton, P., and Frith, M. C. (2011). Adaptive seeds tame genomic sequence comparison. Genome Res. 21, 487-493. doi: 10.1101/gr.113985.110
  94. Kim, W., Li, M., Wang, J., and Pan, Y. (2011). Biological network motif detection and evaluation. BMC Syst. Biol. 5 (Suppl. 3):S5. doi: 10.1186/1752-0509-5-S3-S5
  95. Kirch, W. (ed) (2008). Pearson's Correlation Coefficient. In: Encyclopedia of Public Health (Dordrecht: Springer Netherlands), 1090-1. Available online at: http:// link.springer.com/10.1007/978-1-4020-5614-7_2569 (accessed November 12, 2019).
  96. Knuth, D. E. (1997). The Art of Computer Programming, 3rd Edn. Reading: Addison-Wesle.
  97. Köhler, J., Baumbach, J., Taubert, J., Specht, M., Skusa, A., Rüegg, A., et al. (2006). Graph-based analysis and visualization of experimental results with ONDEX. Bioinform. Oxf. Engl. 22, 1383-1390. doi: 10.1093/bioinformatics/btl081
  98. Koschützki, D., and Schreiber, F. (2008). Centrality analysis methods for biological networks and their application to gene regulatory networks. Gene Regul. Syst. Biol. 2, 193-201. doi: 10.4137/GRSB.S702
  99. Koyutürk, M., Kim, Y., Topkara, U., Subramaniam, S., Szpankowski, W., and Grama, A. (2006). Pairwise alignment of protein interaction networks. J. Comput. Biol. 13, 182-199. doi: 10.1089/cmb.2006.13.182
  100. Kramer, F., Bayerlová, M., Klemm, F., Bleckmann, A., and Beissbarth, T. (2013). rBiopaxParser-an R package to parse, modify and visualize BioPAX data. Bioinform. Oxf. Engl. 29, 520-522. doi: 10.1093/bioinformatics/bts710
  101. Krzywinski, M., Birol, I., Jones, S. J., and Marra, M. A. (2012). Hive plots- rational approach to visualizing networks. Brief Bioinform. 13, 627-644. doi: 10.1093/bib/bbr069
  102. Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., et al. (2009). Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639-1645. doi: 10.1101/gr.092759.109
  103. Kuchaiev, O., Milenković, T., Memišević, V., Hayes, W., and PrŽulj, N. (2010). Topological network alignment uncovers biological function and phylogeny. J. R. Soc. Interface 7, 1341-1354. doi: 10.1098/rsif.2010.0063
  104. Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870-1874. doi: 10.1093/molbev/msw054
  105. Kunegis, J., Fay, D., and Bauckhage, C. (2013). Spectral evolution in dynamic networks. Knowl. Inf. Syst. 37, 1-36. doi: 10.1007/s10115-012-0575-9
  106. Kutmon, M., van Iersel, M. P., Bohler, A., Kelder, T., Nunes, N., Pico, A. R., et al. (2015). PathVisio 3: an extendable pathway analysis toolbox. PLoS Comput. Biol. 11:e1004085. doi: 10.1371/journal.pcbi. 1004085
  107. Langfelder, P., Zhang, B., and Horvath, S. (2008). Defining clusters from a hierarchical cluster tree: the dynamic tree cut package for R. Bioinformatics 24, 719-720. doi: 10.1093/bioinformatics/btm563
  108. Le Novère, N., Hucka, M., Mi, H., Moodie, S., Schreiber, F., Sorokin, A., et al. (2009). Erratum: the systems biology graphical notation. Nat. Biotechnol. 27, 864-864. doi: 10.1038/nbt0909-864d
  109. Lehne, B., and Schlitt, T. (2009). Protein-protein interaction databases: keeping up with growing interactomes. Hum. Genom. 3, 291-297. doi: 10.1186/1479-7364-3-3-291
  110. Leskovec, J., Backstrom, L., Kumar, R., and Tomkins, A. (2008). "Microscopic evolution of social networks, " in Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining -KDD 08 (Las Vegas, NV: ACM Press), 462. Available online at: http://dl.acm.org/ citation.cfm?doid=1401890.1401948 (accessed December 17, 2019).
  111. Leskovec, J., and Sosič, R. (2016). SNAP: a general-purpose network analysis and graph-mining library. ACM Trans. Intell. Syst. Technol. 8, 1-20. doi: 10.1145/2898361
  112. Letunic, I., and Bork, P. (2007). Interactive tree of life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23, 127-128. doi: 10.1093/bioinformatics/btl529
  113. Li, T., Ogihara, M., and Ma, S. (2004). "On combining multiple clusterings, " in: Proceedings of the Thirteenth ACM Conference on Information and Knowledge Management -CIKM'04. (Washington, DC: ACM Press), 294. Available online at: http://portal.acm.org/citation.cfm?doid=1031171.1031234 (accessed August 21, 2019).
  114. Lloyd, C. M., Halstead, M. D. B., and Nielsen, P. F. (2004). CellML: its future, present and past. Prog. Biophys. Mol. Biol. 85, 433-450. doi: 10.1016/j.pbiomolbio.2004.01.004
  115. Longabaugh, W. J. R. (2012). BioTapestry: a tool to visualize the dynamic properties of gene regulatory networks. Methods Mol. Biol. 786, 359-394. doi: 10.1007/978-1-61779-292-2_21
  116. Lü, L., Jin, C. H., and Zhou, T. (2009). Similarity index based on local paths for link prediction of complex networks. Phys. Rev. E 80:046122. doi: 10.1103/PhysRevE.80.046122
  117. Luo, W., and Brouwer, C. (2013). Pathview: an R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics 29, 1830-1831. doi: 10.1093/bioinformatics/btt285
  118. Ma, H.-W., and Zeng, A.-P. (2003). The connectivity structure, giant strong component and centrality of metabolic networks. Bioinform. Oxf. Engl. 19, 1423-1430. doi: 10.1093/bioinformatics/btg177
  119. Maere, S., Heymans, K., and Kuiper, M. (2005). BiNGO: a cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinform. Oxf. Engl. 21, 3448-3449. doi: 10.1093/bioinformatics/bti551
  120. Mamano, N., and Hayes, W. B. (2017). SANA: simulated annealing far outperforms many other search algorithms for biological network alignment. Bioinform. Oxf. Engl. 33, 2156-2164. doi: 10.1093/bioinformatics/btx090
  121. Mangan, S., and Alon, U. (2003). Structure and function of the feed- forward loop network motif. Proc. Natl. Acad. Sci. U.S.A. 100, 11980-11985. doi: 10.1073/pnas.2133841100
  122. Mangan, S., Zaslaver, A., and Alon, U. (2003). The coherent feedforward loop serves as a sign-sensitive delay element in transcription networks. J. Mol. Biol. 334, 197-204. doi: 10.1016/j.jmb.2003. 09.049
  123. Marina Meil, ȃ., and David, H. (2001). An experimental comparison of model-based clustering methods. Mach. Learn. 42, 9-29. doi: 10.1023/A:1007648401407
  124. Martin, S., Brown, W. M., Klavans, R., and Boyack, K. W. (2011). OpenOrd: An Open-Source Toolbox for Large Graph Layout. San Francisco: CA. Available from: http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi= 10.1117/12.871402 (accessed October 25, 2018).
  125. Matys, V., Fricke, E., Geffers, R., Gössling, E., Haubrock, M., Hehl, R., et al. (2003). TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res. 31, 374-378. doi: 10.1093/nar/gkg108
  126. McGillivray, P., Clarke, D., Meyerson, W., Zhang, J., Lee, D., Gu, M., et al. (2018). Network analysis as a grand unifier in biomedical data science. Annu. Rev. Biomed. Data Sci. 1, 153-180. doi: 10.1146/annurev-biodatasci-080917-013444
  127. Meila, M. (2000). Comparing Clustering. University of Washington.
  128. Merico, D., Isserlin, R., Stueker, O., Emili, A., and Bader, G. D. (2010). Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. PLoS ONE 5:e13984. doi: 10.1371/journal.pone.0013984
  129. Mi, H., Muruganujan, A., Casagrande, J. T., and Thomas, P. D. (2013). Large-scale gene function analysis with the PANTHER classification system. Nat. Protoc. 8, 1551-1566. doi: 10.1038/nprot.2013.092
  130. Michael, L. S. A. (2017). DESeq2. Bioconductor. Available online at: https:// bioconductor.org/packages/DESeq2 (accessed December 21, 2019).
  131. Milenković, T., Ng, W. L., Hayes, W., and PrŽUlj, N. (2010). Optimal network alignment with graphlet degree vectors. Cancer Inform. 9:S4744. doi: 10.4137/CIN.S4744
  132. Milner-Gulland, E. J. (2012). Interactions between human behaviour and ecological systems. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 270-278. doi: 10.1098/rstb.2011.0175
  133. Milo, R. (2002). Network motifs: simple building blocks of complex networks. Science 298, 824-827. doi: 10.1126/science.298.5594.824
  134. Mirkin, B. (2001). Eleven ways to look at the chi-squared coefficient for contingency tables. Am. Stat. 55, 111-120. doi: 10.1198/000313001750358428
  135. Mootha, V. K., Lindgren, C. M., Eriksson, K.-F., Subramanian, A., Sihag, S., Lehar, J., et al. (2003). PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267-273. doi: 10.1038/ng1180
  136. Moreau, Y., and Tranchevent, L.-C. (2012). Computational tools for prioritizing candidate genes: boosting disease gene discovery. Nat. Rev. Genet. 13, 523-536. doi: 10.1038/nrg3253
  137. Morris, J. H., Apeltsin, L., Newman, A. M., Baumbach, J., Wittkop, T., Su, G., et al. (2011). Clustermaker: a multi-algorithm clustering plugin for cytoscape. BMC Bioinform. 12:436. doi: 10.1186/1471-2105-12-436
  138. Moschopoulos, C. N., Pavlopoulos, G. A., Iacucci, E., Aerts, J., Likothanassis, S., Schneider, R., et al. (2011). Which clustering algorithm is better for predicting protein complexes? BMC Res. Notes 4:549. doi: 10.1186/1756-0500-4-549
  139. Moulos, P., and Hatzis, P. (2015). Systematic integration of RNA-Seq statistical algorithms for accurate detection of differential gene expression patterns. Nucleic Acids Res. 43:e25. doi: 10.1093/nar/gku1273
  140. Mrvar, A., and Batagelj, V. (2016). Analysis and visualization of large networks with program package Pajek. Comp. Adapt. Syst. Model 4:6. doi: 10.1186/s40294-016-0017-8
  141. Mudunuri, U., Che, A., Yi, M., and Stephens, R. M. (2009). bioDBnet: the biological database network. Bioinform. Oxf. Engl. 25, 555-556. doi: 10.1093/bioinformatics/btn654
  142. Murray-Rust, P., Rzepa, H. S., and Wright, M. (2001). Development of chemical markup language (CML) as a system for handling complex chemical content. N. J. Chem. 618-634. doi: 10.1039/b008780g
  143. Navlakha, S., and Kingsford, C. (2010). The power of protein interaction networks for associating genes with diseases. Bioinform. Oxf. Engl. 26, 1057-1063. doi: 10.1093/bioinformatics/btq076
  144. Needleman, S. B., and Wunsch, C. D. (1970). A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48, 443-453. doi: 10.1016/0022-2836(70)90057-4
  145. Newman, M. E. J., and Girvan, M. (2004). Finding and evaluating community structure in networks. Phys. Rev. E 69:026113. doi: 10.1103/PhysRevE.69.026113
  146. Ni, J., Koyuturk, M., Tong, H., Haines, J., Xu, R., and Zhang, X. (2016). Disease gene prioritization by integrating tissue-specific molecular networks using a robust multi-network model. BMC Bioinform. 17:453. doi: 10.1186/s12859-016-1317-x
  147. Nica, A. C., and Dermitzakis, E. T. (2013). Expression quantitative trait loci: present and future. Philos. Trans. R. Soc. B Biol. Sci. 368:20120362. doi: 10.1098/rstb.2012.0362
  148. O'Donoghue, S. I., Gavin, A.-C., Gehlenborg, N., Goodsell, D. S., Hériché J.-K., Nielsen, C. B., et al. (2010). Visualizing biological data-now and in the future. Nat. Methods 7, S2-S4. doi: 10.1038/nmeth.f.301
  149. Pafilis, E., Buttigieg, P. L., Ferrell, B., Pereira, E., Schnetzer, J., Arvanitidis, C., et al. (2016). EXTRACT: interactive extraction of environment metadata and term suggestion for metagenomic sample annotation. Database J. Biol. Databases Curat. 2016:baw005. doi: 10.1093/database/baw005
  150. Parkinson, H., Kapushesky, M., Shojatalab, M., Abeygunawardena, N., Coulson, R., Farne, A., et al. (2007). ArrayExpress-a public database of microarray experiments and gene expression profiles. Nucleic Acids Res. 35, D747-D750. doi: 10.1093/nar/gkl995
  151. Pavlopoulos, G. A., Hooper, S. D., A., Schneider, R., and Aerts, J. (2011b). Medusa: a tool for exploring and clustering biological networks. BMC Res. Notes 4:384. doi: 10.1186/1756-0500-4-384
  152. Pavlopoulos, G. A., Iacucci, E., Iliopoulos, I., and Bagos, P. (2013). "Interpreting the omics 'era' data, " in Multimedia Services in Intelligent Environments, eds G. A. Tsihrintzis, M. Virvou, and L. C. Jain (Heidelberg: Springer International Publishing), 79-100. Available online at: http://link.springer.com/10.1007/978- 3-319-00375-7_6 (accessed January 13, 2019).
  153. Pavlopoulos, G. A., Kontou, P. I., Pavlopoulou, A., Bouyioukos, C., Markou, E., and Bagos, P. G. (2018). Bipartite graphs in systems biology and medicine: a survey of methods and applications. GigaScience 7, 1-31. doi: 10.1093/gigascience/giy014
  154. Pavlopoulos, G. A., Malliarakis, D., Papanikolaou, N., Theodosiou, T., Enright, A. J., and Iliopoulos, I. (2015). Visualizing genome and systems biology: technologies, tools, implementation techniques and trends, past, present and future. GigaScience 4:38. doi: 10.1186/s13742-015-0077-2
  155. Pavlopoulos, G. A., O'Donoghue, S. I., Satagopam, V. P., Soldatos, T. G., Pafilis, E., and Schneider, R. (2008b). Arena3D: visualization of biological networks in 3D. BMC Syst. Biol. 2:104. doi: 10.1186/1752-0509-2-104
  156. Pavlopoulos, G. A., Paez-Espino, D., Kyrpides, N. C., and Iliopoulos, I. (2017). Empirical comparison of visualization tools for larger-scale network analysis. Adv. Bioinforma. 2017:1278932. doi: 10.1155/2017/1278932
  157. Pavlopoulos, G. A., Promponas, V. J., Ouzounis, C. A., and Iliopoulos, I. (2014). Biological information extraction and co-occurrence analysis. Methods Mol. Biol. 1159, 77-92. doi: 10.1007/978-1-4939-0709-0_5
  158. Pavlopoulos, G. A., Secrier, M., Moschopoulos, C. N., Soldatos, T. G., Kossida, S., Aerts, J., et al. (2011a). Using graph theory to analyze biological networks. BioData Min. 4:10. doi: 10.1186/1756-0381-4-10
  159. Pavlopoulos, G. A., Soldatos, T. G., Barbosa-Silva, A., and Schneider, R. (2010). A reference guide for tree analysis and visualization. BioData Min. 3:1. doi: 10.1186/1756-0381-3-1
  160. Pavlopoulos, G. A., Wegener, A.-L., and Schneider, R. (2008a). A survey of visualization tools for biological network analysis. BioData Min. 1:12. doi: 10.1186/1756-0381-1-12
  161. Pearson, W. R. (2000). Flexible sequence similarity searching with the FASTA3 program package. Methods Mol. Biol. 132, 185-219. doi: 10.1385/1-59259-192-2:185
  162. Peixoto, T. P. (2017). The Graph-Tool Python Library. Figshare. Available from: https://figshare.com/articles/graph_tool/1164194 (accessed December 19, 2019).
  163. Peri, S., Navarro, J. D., Amanchy, R., Kristiansen, T. Z., Jonnalagadda, C. K., Surendranath, V., et al. (2003). Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res. 13, 2363-2371. doi: 10.1101/gr.1680803
  164. Pillich, R. T., Chen, J., Rynkov, V., Welker, D., and Pratt, D. (2017). NDEx: a community resource for sharing and publishing of biological networks. Methods Mol. Biol. 1558, 271-301. doi: 10.1007/978-1-4939-6783-4_13
  165. Platig, J., Castaldi, P. J., DeMeo, D., and Quackenbush, J. (2016). Bipartite community structure of eQTLs. PLoS Comput Biol. 12:e1005033. doi: 10.1371/journal.pcbi.1005033
  166. Przulj, N., Corneil, D. G., and Jurisica, I. (2004). Modeling interactome: scale-free or geometric? Bioinform. Oxf. Engl. 20, 3508-3515. doi: 10.1093/bioinformatics/bth436
  167. Rand, W. M. (1971). Objective Criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66, 846-850. doi: 10.1080/01621459.1971.10482356
  168. Rao, V. S., Srinivas, K., Sujini, G. N., and Kumar, G. N. S. (2014)Protein-protein interaction detection: methods and analysis. Int. J. Proteomics 2014:1-12. doi: 10.1155/2014/147648
  169. Raudvere, U., Kolberg, L., Kuzmin, I., Arak, T., Adler, P., Peterson, H., et al. (2019). g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 47, W191-W198. doi: 10.1093/nar/gkz369
  170. Reimand, J., Isserlin, R., Voisin, V., Kucera, M., Tannus-Lopes, C., Rostamianfar, A., et al. (2019). Pathway enrichment analysis and visualization of omics data using g:Profiler, GSEA, cytoscape and enrichmentmap. Nat. Protoc. 14, 482-517. doi: 10.1038/s41596-018-0103-9
  171. Reisig, W. (1985). Petri Nets: An Introduction. Berlin, NY: Springer- Verlag. 161 (EATCS monographs on theoretical computer science). doi: 10.1007/978-3-642-69968-9
  172. Rodchenkov, I., Babur, O., Luna, A., Aksoy, B. A., Wong, J. V., Fong, D., et al. (2019). Pathway commons 2019 update: integration, analysis and exploration of pathway data. Nucleic Acids Res. 48, D489-D497. doi: 10.1093/nar/ gkz946
  173. Romanuk, T. N., Vogt, R. J., Young, A., Tuck, C., and Carscallen, M. W. (2010). Maintenance of positive diversity-stability relations along a gradient of environmental stress. PLoS ONE 5:e10378. doi: 10.1371/journal.pone.0010378
  174. Sabidussi, G. (1966). The centrality of a graph. Psychometrika 31, 581-603. doi: 10.1007/BF02289527
  175. Saito, R., Smoot, M. E., Ono, K., Ruscheinski, J., Wang, P.-L., Lotia, S., et al. (2012). A travel guide to cytoscape plugins. Nat. Methods 9, 1069-1076. doi: 10.1038/nmeth.2212
  176. Saitou, N., and Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
  177. Santolini, M., and Barabási, A.-L. (2018). Predicting perturbation patterns from the topology of biological networks. Proc. Natl. Acad. Sci. U.S.A. 115, E6375-E6383. doi: 10.1073/pnas.1720589115
  178. Satagopam, V. P., Theodoropoulou, M. C., Stampolakis, C. K., Pavlopoulos, G. A., Papandreou, N. C., Bagos, P. G., et al. (2010). GPCRs, G-proteins, effectors and their interactions: human-gpDB, a database employing visualization tools and data integration techniques. Database J. Biol. Databases Curat. 2010:baq019. doi: 10.1093/database/baq019
  179. Schreiber, F., and Schwöbbermeyer, H. (2005). MAVisto: a tool for the exploration of network motifs. Bioinform. Oxf. Engl. 21, 3572-3574. doi: 10.1093/bioinformatics/bti556
  180. Secrier, M., Pavlopoulos, G. A., Aerts, J., and Schneider, R. (2012). Arena3D: visualizing time-driven phenotypic differences in biological systems. BMC Bioinform. 13:45. doi: 10.1186/1471-2105-13-45
  181. Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., et al. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498-2504. doi: 10.1101/gr.1239303
  182. Sharan, R., Suthram, S., Kelley, R. M., Kuhn, T., McCuine, S., Uetz, P., et al. (2005). Conserved patterns of protein interaction in multiple species. Proc. Natl. Acad. Sci. U.S.A. 102, 1974-1979. doi: 10.1073/pnas.0409522102
  183. Sharan, R., Ulitsky, I., and Shamir, R. (2007). Network-based prediction of protein function. Mol. Syst. Biol. 3:88. doi: 10.1038/msb4100129
  184. Shen-Orr, S. S., Milo, R., Mangan, S., and Alon, U. (2002). Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet. 31, 64-68. doi: 10.1038/ng881
  185. Siebourg-Polster, J., Mudrak, D., Emmenlauer, M., Rämö. P., Dehio, C., Greber, U., et al. (2015). NEMix: single-cell nested effects models for probabilistic pathway stimulation. PLoS Comput. Biol. 11:e1004078. doi: 10.1371/journal.pcbi.1004078
  186. Slenter, D. N., Kutmon, M., Hanspers, K., Riutta, A., Windsor, J., Nunes, N., et al. (2018). WikiPathways: a multifaceted pathway database bridging metabolomics to other omics research. Nucleic Acids Res. 46, D661-D667. doi: 10.1093/nar/gkx1064
  187. Smith, T. F., and Waterman, M. S. (1981). Identification of common molecular subsequences. J. Mol. Biol. 147, 195-197. doi: 10.1016/0022-2836(81)90087-5
  188. Smola, A. J., and Kondor, R. (2003). "Kernels and regularization on graphs, " in Learning Theory and Kernel Machines, eds B. Schölkopf and M. K. Warmuth (Berlin: Springer Berlin Heidelberg), 144-158. Available online at: http://link. springer.com/10.1007/978-3-540-45167-9_12 (accessed December 17, 2019).
  189. Sommer, B. (2019). The CELLmicrocosmos tools: a small history of java-based cell and membrane modelling open source software development. J. Integr. Bioinform. 16:20190057. doi: 10.1515/jib-2019-0057
  190. Sonawane, A. R., Weiss, S. T., Glass, K., and Sharma, A. (2019). Network medicine in the age of biomedical big data. Front. Genet. 10:294. doi: 10.3389/fgene.2019.00294
  191. Spirin, V., and Mirny, L. A. (2003). Protein complexes and functional modules in molecular networks. Proc. Natl. Acad. Sci. U.S.A. 100, 12123-12128. doi: 10.1073/pnas.2032324100
  192. Stark, C., Breitkreutz, B.-J., Reguly, T., Boucher, L., Breitkreutz, A., and Tyers, M. (2006). BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 34, D535-D539. doi: 10.1093/nar/gkj109
  193. Stone, L., Simberloff, D., and Artzy-Randrup, Y. (2019). Network motifs and their origins. PLoS Comput. Biol. 15:e1006749. doi: 10.1371/journal.pcbi.1006749
  194. Subramanian, A., Tamayo, P., Mootha, K., Mukherjee, S., Ebert, B. L., Gillette, M. A., et al. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U.S.A. 102, 15545-15550. doi: 10.1073/pnas.0506580102
  195. Szklarczyk, D., and Jensen, L. J. (2015). "Protein-protein interaction databases, " in Protein-Protein Interactions, eds C. L. Meyerkord and H. Fu (New York, NY: Springer New York), 39-56.
  196. Szklarczyk, D., Santos, A., von Mering, C., Jensen, L. J., Bork, P., and Kuhn, M. (2016). STITCH 5: augmenting protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Res. 44, D380-D384. doi: 10.1093/nar/gkv1277
  197. Theocharidis, A., van Dongen, S., Enright, A. J., and Freeman, T. C. (2009). Network visualization and analysis of gene expression data using biolayout express(3D). Nat. Protoc. 4, 1535-1550. doi: 10.1038/nprot.2009.177
  198. Theodosiou, T., Efstathiou, G., Papanikolaou, N., Kyrpides, N. C., Bagos, P. G., Iliopoulos, I., et al. (2017). NAP: The network analysis profiler, a web tool for easier topological analysis and comparison of medium-scale biological networks. BMC Res. Notes 10:278. doi: 10.1186/s13104-017-2607-8
  199. Thimm, O., Bläsing, O., Gibon, Y., Nagel, A., Meyer, S., Krüger, P., et al. (2004). MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. Cell Mol. Biol. 37, 914-939. doi: 10.1111/j.1365-313X.2004.02016.x
  200. Thomas, R., and Portier, C. J. (2013). Gene expression networks. Methods Mol. Biol. 930, 165-178. doi: 10.1007/978-1-62703-059-5_7
  201. Tian, W., and Samatova, N. F. (2008). "Pairwise alignment of interaction networks by fast identification of maximal conserved patterns, " in Biocomputing 2009 (Kohala Coast, HI: World Scientific), 99-110. Available online at: http:// www.worldscientific.com/doi/abs/10.1142/9789812836939_0010 (accessed December 16, 2019).
  202. Tipney, H., and Hunter, L. (2010). An introduction to effective use of enrichment analysis software. Hum. Genomics 4, 202-206. doi: 10.1186/1479-7364-4-3-202
  203. Torres, J. M., Gamazon, E. R., Parra, E. J., Below, J. E., Valladares-Salgado, A., Wacher, N., et al. (2014). Cross-tissue and tissue-specific eQTLs: partitioning the heritability of a complex trait. Am. J. Hum. Genet. 95, 521-534. doi: 10.1016/j.ajhg.2014.10.001
  204. Towfic, F., Greenlee, M. H. W., and Honavar, V. (2009). "Aligning biomolecular networks using modular graph kernels, " in Algorithms in Bioinformatics, eds S. L. Salzberg and T. Warnow (Berlin: Springer Berlin Heidelberg), 345-361. Available online at: http://link.springer.com/10.1007/978-3-642-04241-6_29 (accessed December 11, 2019).
  205. Tripathi, K. P., Evangelista, D., Zuccaro, A., and Guarracino, M. R. (2015). Transcriptator: an automated computational pipeline to annotate assembled reads and identify non coding RNA. PLoS ONE 10:e0140268. doi: 10.1371/journal.pone.0140268
  206. Ulgen, E., Ozisik, O., and Sezerman, O. U. (2019). pathfindR: An R package for comprehensive identification of enriched pathways in omics data through active subnetworks. Front. Genet. 10:858. doi: 10.3389/fgene.2019.
  207. Ulrich, L. E., and Zhulin, I. B. (2007). MiST: a microbial signal transduction database. Nucleic Acids Res. 35, D386-D390. doi: 10.1093/nar/gkl932
  208. Vázquez, A., Dobrin, R., Sergi, D., Eckmann, J.-P., Oltvai, Z. N., and Barabási, A.- L. (2004). The topological relationship between the large-scale attributes and local interaction patterns of complex networks. Proc. Natl. Acad. Sci. U.S.A. 101, 17940-17945. doi: 10.1073/pnas.0406024101
  209. Wagner, S., and Wagner, D. (2007). Comparing Clusterings -An Overview. Karlsruhe. Available online at: https://publikationen.bibliothek.kit.edu/ 1000011477 (accessed July 24, 2019).
  210. Watts, D. J., and Strogatz, S. H. (1998). Collective dynamics of "small-world" networks. Nature 393, 440-442. doi: 10.1038/30918
  211. Wernicke, S., and Rasche, F. (2006). FANMOD: a tool for fast network motif detection. Bioinform. Oxf. Engl. 22, 1152-1153. doi: 10.1093/bioinformatics/btl038
  212. Xenarios, I., Rice, D. W., Salwinski, L., Baron, M. K., Marcotte, E. M., and Eisenberg, D. (2000). DIP: the database of interacting proteins. Nucleic Acids Res. 28, 289-291. doi: 10.1093/nar/28.1.289
  213. Xu, R., and Wunsch,II. D. (2005). Survey of clustering algorithms. IEEE Trans. Neural Netw. 16, 645-678. doi: 10.1109/TNN.2005.845141
  214. Yang, Z. (1996). Phylogenetic analysis using parsimony and likelihood methods. J. Mol. Evol. 42, 294-307. doi: 10.1007/BF02198856
  215. Yevshin, I., Sharipov, R., Kolmykov, S., Kondrakhin, Y., and Kolpakov, F. (2019). GTRD: a database on gene transcription regulation-2019 update. Nucleic Acids Res. 47, D100-D105. doi: 10.1093/nar/gky1128
  216. Yifan, H. (2005). Efficient, high-quality force-directed graph drawing. Math. J. 10, 37-71. Available online at: http://asus.myds.me:6543/paper/ktall/37%20- %201984%20-%20Efficient,%20High-Quality%20Force-Directed%20Graph %20Drawing.pdf
  217. Yook, S.-H., Oltvai, Z. N., and Barabási, A.-L. (2004). Functional and topological characterization of protein interaction networks. Proteomics 4, 928-942. doi: 10.1002/pmic.200300636
  218. Yue, X., Wang, Z., Huang, J., Parthasarathy, S., Moosavinasab, S., Huang, Y., et al. (2019). Graph embedding on biomedical networks: methods, applications and evaluations. Cowen L Ed. Bioinform. btz718. doi: 10.1093/bioinformatics/btz718
  219. Zampelli, S., Deville, Y., and Solnon, C. (2010). Solving subgraph isomorphism problems with constraint programming. Constraints 15, 327-353. doi: 10.1007/s10601-009-9074-3
  220. Zhang, H., Liang, Y., Han, S., Peng, C., and Li, Y. (2019). Long noncoding RNA and protein interactions: from experimental results to computational models based on network methods. Int. J. Mol. Sci. 20:1284. doi: 10.3390/ijms200 61284
  221. Zhou, C. (2016). A Survey of Edge Bundling Methods for Graph Visualization. Zhou, H., Panpan, X.u, Yuan, X., and Qu, H. (2013). Edge bundling in information visualization. Tsinghua. Sci. Technol. 18, 145-156. doi: 10.1109/TST.2013.6509098