Academia.eduAcademia.edu

Outline

The automation of science

2009, Science

Abstract

We have demonstrated the discovery of physical laws, from scratch, directly from experimentally captured data with the use of a computational search. We used the presented approach to detect nonlinear energy conservation laws, Newtonian force laws, geometric invariants, and system manifolds in various synthetic and physically implemented systems without prior knowledge about physics, kinematics, or geometry. The concise analytical expressions that we found are amenable to human interpretation and help to reveal the physics underlying the observed phenomenon. Many applications exist for this approach, in fields ranging from systems biology to cosmology, where theoretical gaps exist despite abundance in data.

FAQs

sparkles

AI

What are the core functionalities of robot scientist Adam?add

Robot scientist Adam autonomously generates and tests hypotheses, executing high-throughput experiments in microbial genomics, measuring over 6.6 million data points.

How does Adam formalize scientific experiments?add

Adam uses a customized ontology called LABORS, which organizes over 10,000 research units in a structured, logic-based format to enhance reproducibility.

What methodological innovations differentiate Adam from traditional research methods?add

Adam implements laboratory robotics for hypothesis-driven experimentation, allowing automated cycles without human intervention, significantly expanding experimental throughput.

What role does DIR1 play in systemic acquired resistance (SAR)?add

DIR1 is essential for SAR and exudate-induced resistance, serving as a putative signal carrier in lipid transfer protein pathways.

How do Adam's findings challenge existing knowledge about orphan enzymes?add

Adam identified genes encoding orphan enzymes backed by statistical significance (P < 0.05), improving understanding of yeast metabolic pathways.

References (49)

  1. References and Notes
  2. P. W. Anderson, Science 177, 393 (1972).
  3. E. Noether, Nachr. d. König Gesellsch. d. Wiss. zu Göttingen, Math-Phys. Klasse 235 (1918).
  4. J. Hanc, S. Tuleja, M. Hancova, Am. J. Phys. 72, 428 (2004).
  5. D. Clery, D. Voss, Science 308, 809 (2005).
  6. A. Szalay, J. Gray, Nature 440, 413 (2006).
  7. R. E. Valdés-Pérez, Commun. Assoc. Comput. Mach. 42, 37 (1999).
  8. R. D. King et al., Nature 427, 247 (2004).
  9. P. Langley, Cogn. Sci. 5, 31 (1981).
  10. R. M. Jones, P. Langley, Comput. Intell. 21, 480 (2005).
  11. J. R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection. (MIT Press, Cambridge, MA, 1992).
  12. S. Forrest, Science 261, 872 (1993).
  13. J. Duffy, J. Engle-Warnick, Evolutionary Computation in Economics and Finance 100, 61 (2002).
  14. F. Cyril, B. Alberto, in 2007 IEEE Congress on Evolutionary Computation, S. Dipti, W. Lipo, Eds. (IEEE Press, Singapore, 2007), pp. 23-30.
  15. B. Elena, B. Andrei, L. Henri, in Seventh International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC '05) (IEEE Press, 2005), pp. 321-324.
  16. J. Bongard, H. Lipson, Proc. Natl. Acad. Sci. U.S.A. 104, 9943 (2007).
  17. S. Nee, N. Colegrave, S. A. West, A. Grafen, Science 309, 1236 (2005).
  18. P. Jäckel, T. Mullin, Proc. R. Soc. London Ser. A 454, 3257 (1998).
  19. T. Shinbrot, C. Grebogi, J. Wisdom, J. A. Yorke, Am. J. Phys. 60, 491 (1992).
  20. Y. Liang, B. Feeny, Nonlinear Dyn. 52, 181 (2008).
  21. M. Mor, A. Wolf, O. Gottlieb, in Proceedings of the 21st ASME Biennial Conference on Mechanical Vibration and Noise (ASME Press, Las Vegas, NV, 2007), pp. 1-8.
  22. P. Gregory, R. Denis, F. Cyril, in Evolution Artificielle, 6th International Conference, vol. 2936, L. Pierre, C. Pierre, F. Cyril, L. Evelyne, S. Marc, Eds. (Springer, Marseilles, France, 2003), pp. 267-277.
  23. E. D. De Jong, J. B. Pollack, in Genetic Programming and Evolvable Machines, vol. 4 (Springer, Berlin, 2003), pp. 211-233.
  24. S. H. Strogatz, Nature 410, 268 (2001).
  25. P. A. Marquet, Nature 418, 723 (2002).
  26. This research was supported in part by Integrative Graduate Education and Research Traineeship program in nonlinear systems, a U.S. NSF graduate research fellowship, and NSF Creative-IT grant 0757478 and CAREER grant 0547376. We thank M. Kurman for editorial consultation and substantive editing of the manuscript. References and Notes
  27. Nature 440, 383 (2006).
  28. T. Hey, A. Trefethen, in Grid Computing: Making the Global Infrastructure a Reality, 36 809 (Wiley, New York, 2003).
  29. S. Toulmin, in Encyclopaedia Britannica Deluxe Edition 2004 CD (Encyclopaedia Britannica UK, London, 2003).
  30. T. Berners-Lee, J. Hendler, O. Lassila, Sci. Am. 284, 34 (May 2001).
  31. M. Ashburner et al., Nat. Genet. 25, 25 (2000).
  32. R. D. King et al., Nature 427, 247 (2004).
  33. B. G. Buchanan, G. L. Sutherland, E. A. Feigenbaum, in Machine Intelligence, B. Meltzer, D. Michie, Eds. (Edinburgh Univ. Press, Edinburgh, UK, 1969), vol. 5, pp. 209-254.
  34. P. Langley, H. A. Simon, G. L. Bradshaw, J. M. Zytkow, Scientific Discovery: Computational Explorations of the Creative Process (MIT Press, Cambridge, MA, 1987).
  35. J. M. Zytkow, J. Zhu, A. Hussam, in Proceedings of the Eighth National Conference on Artificial Intelligence (AAAI-90), 889 (AAAI Press, Menlo Park, CA, 1990).
  36. L. Hood, J. R. Heath, M. E. Phelps, B. Lin, Science 306, 640 (2004).
  37. L. N. Soldatova, R. D. King, J. R. Soc. Interface 3, 795 (2006).
  38. L. N. Soldatova, A. Clare, A. Sparkes, R. D. King, Bioinformatics 22, e464 (2006).
  39. R. D. King et al., The Robot Scientist Project, www.aber. ac.uk/compsci/Research/bio/robotsci/ (2008).
  40. J. Warringer, E. Ericson, L. Fernandez, O. Nerman, A. Blomberg, Proc. Natl. Acad. Sci. U.S.A. 100, 15724 (2003).
  41. K. E. Whelan, R. D. King, BMC Bioinformatics 9, 97 (2008).
  42. Materials and methods are available as supporting material on Science Online.
  43. I. Horrocks, P. F. Patel-Schneider, F. van Harmelen, Web Semantics 1, 7 (2003).
  44. J. D. Ullman, Principles of Database and Knowledge-Base Systems, Vol. I: Classical Database Systems (Computer Science, New York, 1988).
  45. M. J. Herrgard et al., Nat. Biotechnol. 26, 1155 (2008).
  46. A. Turing, Mind 236, 433 (1950).
  47. T. M. Zabriskie, M. D. Jackson, Nat. Prod. Rep. 17, 85 (2000).
  48. M. Young, J. Exp. Bot. 24, 1172 (1973).
  49. This work was funded by grants from the Biotechnology and Biological Sciences Research Council to R.D.K., S.G.O., and M.Y.; by a SRIF 2 award to R.D.K.; by fellowships from the Royal Commission for the Great