Academia.eduAcademia.edu

Outline

Elastic textures for additive fabrication

2015, ACM Transactions on Graphics

https://doi.org/10.1145/2766937

Abstract

Figure 1: Six basic elastic textures are used to obtain a large range of homogenized isotropic material properties. A 3 × 3 × 1 tiling of each pattern is shown, along with rendered (left) and fabricated (right) cell geometry below. The naming convention is explained in Section 4.

References (44)

  1. AGARWAL, S., MIERLE, K., AND OTHERS. Ceres solver. http: //ceres-solver.org.
  2. ALLAIRE, G. 2002. Shape optimization by the homogenization method, vol. 146. Springer.
  3. ANDREASSEN, E., LAZAROV, B. S., AND SIGMUND, O. 2014. Design of manufacturable 3D extremal elastic microstructure. Mechanics of Materials 69, 1, 1-10.
  4. AVELLANEDA, M. 1987. Optimal bounds and microgeometries for elastic two-phase composites. SIAM Journal on Applied Mathe- matics 47, 6, 1216-1228.
  5. BENDSØE, M. P., AND SIGMUND, O. 2003. Topology optimiza- tion: theory, methods and applications. Springer.
  6. B ÜCKMANN, T., STENGER, N., KADIC, M., KASCHKE, J., FR ÖLICH, A., KENNERKNECHT, T., EBERL, C., THIEL, M., AND WEGENER, M. 2012. Tailored 3d mechanical metamate- rials made by dip-in direct-laser-writing optical lithography. Ad- vanced Materials 24, 20, 2710-2714.
  7. CADMAN, J. E., ZHOU, S., CHEN, Y., AND LI, Q. 2013. On design of multi-functional microstructural materials. Journal of Materials Science 48, 1, 51-66.
  8. CHEN, D., LEVIN, D. I., DIDYK, P., SITTHI-AMORN, P., AND MATUSIK, W. 2013. Spec2fab: a reducer-tuner model for trans- lating specifications to 3d prints. ACM Transactions on Graphics (TOG) 32, 4, 135.
  9. CHERKAEV, A. 2000. Variational methods for structural optimiza- tion, vol. 140. Springer.
  10. CHU, J., ENGELBRECHT, S., GRAF, G., AND ROSEN, D. W. 2010. A comparison of synthesis methods for cellular structures with application to additive manufacturing. Rapid Prototyping Journal 16, 4, 275-283.
  11. CIGNONI, P., PIETRONI, N., MALOMO, L., AND SCOPIGNO, R. 2014. Field-aligned mesh joinery. ACM Trans. Graph. 33, 1 (Feb.), 11:1-11:12.
  12. CIORANESCU, D., AND DONATO, P. 1999. An introduction to homogenization. Oxford University Press.
  13. GRABOVSKY, Y., AND KOHN, R. V. 1995. Microstructures mini- mizing the energy of a two phase elastic composite in two space dimensions. II: the Vigdergauz microstructure. Journal of the Mechanics and Physics of Solids 43, 6, 949-972.
  14. GREAVES, G. N., GREER, A. L., LAKES, R. S., AND ROUXEL, T. 2011. Poisson's ratio and modern materials. Nature Materials 10, 11, 823-837.
  15. GUEST, J. K., AND PR ÉVOST, J. H. 2006. Optimizing multi- functional materials: Design of microstructures for maximized stiffness and fluid permeability. International Journal of Solids and Structures 43, 2223, 7028 -7047.
  16. HART, G. W. 2008. Sculptural forms from hyperbolic tessella- tions. In Shape Modeling and Applications, 2008. SMI 2008. IEEE International Conference on, IEEE, 155-161.
  17. HILDEBRAND, K., BICKEL, B., AND ALEXA, M. 2012. Crdbrd: Shape fabrication by sliding planar slices. Comp. Graph. Forum 31, 2pt3 (May), 583-592.
  18. HILLER, J., AND LIPSON, H. 2009. Design and analysis of dig- ital materials for physical 3d voxel printing. Rapid Prototyping Journal 15, 2, 137-149.
  19. HOLLISTER, S. J. 2005. Porous scaffold design for tissue engi- neering. Nature Materials 4, 7, 518-524.
  20. KANG, H. S. 2010. Hierarchical design and simulation of tissue engineering scaffold mechanical, mass transport, and degrada- tion properties. PhD thesis, The University of Michigan.
  21. KHAREVYCH, L., MULLEN, P., OWHADI, H., AND DESBRUN, M. 2009. Numerical coarsening of inhomogeneous elastic ma- terials. ACM Trans. Graph. 28, 3 (July), 51:1-51:8.
  22. LIN, C. Y., KIKUCHI, N., AND HOLLISTER, S. J. 2004. A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity. Journal of Biomechanics 37, 5, 623-636.
  23. LIN, C.-Y., HSIAO, C.-C., CHEN, P.-Q., AND HOLLISTER, S. J. 2004. Interbody fusion cage design using integrated global lay- out and local microstructure topology optimization. Spine 29, 16, 1747-1754. PMID: 15303018.
  24. LIU, L., JAMES, R. D., AND LEO, P. H. 2007. Periodic inclusion- atrix microstructures with constant field inclusions. Metallurgi- cal and Materials Transactions A 38, 4, 781-787.
  25. MELA, K., AND KOSKI, J. 2013. Distributed loads in truss topol- ogy optimization. In Proceedings of the 10th world congress on structural and multidisciplinary optimization, Orlando.
  26. MILTON, G. W. 2002. The theory of composites. Cambridge University Press.
  27. MIRONOV, V., VISCONTI, R. P., KASYANOV, V., FORGACS, G., DRAKE, C. J., AND MARKWALD, R. R. 2009. Organ printing: tissue spheroids as building blocks. Biomaterials 30, 12, 2164- 2174.
  28. MITANI, J., AND SUZUKI, H. 2004. Making papercraft toys from meshes using strip-based approximate unfolding. In ACM SIG- GRAPH 2004 Papers, ACM, New York, NY, USA, SIGGRAPH '04, ACM, 259-263.
  29. MORI, Y., AND IGARASHI, T. 2007. Plushie: An interactive design system for plush toys. In ACM SIGGRAPH 2007 Papers, ACM, New York, NY, USA, SIGGRAPH '07, ACM.
  30. NAKASONE, P., AND SILVA, E. 2010. Dynamic design of piezo- electric laminated sensors and actuators using topology opti- mization. Journal of Intelligent Material Systems and Structures 21, 16, 1627-1652.
  31. RADMAN, A., HUANG, X., AND XIE, Y. 2013. Topological op- timization for the design of microstructures of isotropic cellular materials. Engineering Optimization 45, 11, 1331-1348.
  32. SCHWARTZBURG, Y., AND PAULY, M. 2013. Fabrication-aware design with intersecting planar pieces. Comput. Graph. Forum 32, 2, 317-326.
  33. SCHWARTZBURG, Y., TESTUZ, R., TAGLIASACCHI, A., AND PAULY, M. 2014. High-contrast computational caustic design. ACM Trans. Graph. 33, 4 (July), 74:1-74:11.
  34. SCHWERDTFEGER, J., WEIN, F., LEUGERING, G., SINGER, R. F., KRNER, C., STINGL, M., AND SCHURY, F. 2011. Design of auxetic structures via mathematical optimization. Advanced Materials 23, 22, 2650-2654.
  35. SI, H. 2010. A quality tetrahedral mesh generator and a 3D Delau- nay triangulator. URL http://tetgen.berlios.de.
  36. SIGMUND, O. 1995. Tailoring materials with prescribed elastic properties. Mechanics of Materials 20, 4, 351-368.
  37. SKOURAS, M., THOMASZEWSKI, B., COROS, S., BICKEL, B., AND GROSS, M. 2013. Computational design of actuated de- formable characters. ACM Transactions on Graphics (TOG) 32, 4, 82.
  38. TORQUATO, S., AND DONEV, A. 2004. Minimal surfaces and multifunctionality. Proceedings of the Royal Society of London.
  39. Series A: Mathematical, Physical and Engineering Sciences 460, 2047, 1849-1856.
  40. TORQUATO, S., HYUN, S., AND DONEV, A. 2002. Multifunc- tional composites: optimizing microstructures for simultaneous transport of heat and electricity. Physical review letters 89, 26, 266601.
  41. TORQUATO, S., HYUN, S., AND DONEV, A. 2003. Optimal de- sign of manufacturable three-dimensional composites with mul- tifunctional characteristics. Journal of Applied Physics 94, 9, 5748-5755.
  42. TORQUATO, S. 2002. Random heterogeneous materials: mi- crostructure and macroscopic properties, vol. 16. Springer.
  43. VIDIM ČE, K., WANG, S.-P., RAGAN-KELLEY, J., AND MA- TUSIK, W. 2013. Openfab: A programmable pipeline for multi- material fabrication. ACM Transactions on Graphics (TOG) 32, 4, 136.
  44. WEYRICH, T., PEERS, P., MATUSIK, W., AND RUSINKIEWICZ, S. 2009. Fabricating microgeometry for custom surface re- flectance. ACM Trans. on Graphics (Proc. SIGGRAPH) 28, 3, 32:1-32:6.