Academia.eduAcademia.edu

Outline

Extension of Description Logics for Reasoning About Typicality

2007

Abstract

We extend the Description Logic ALC with a “typicality” operator T that allows us to reason about the prototypical properties and inheritance with exceptions. The resulting logic is called ALC + T. The typicality operator is intended to select the “most normal” or “most typical” instances of a concept. In our framework, knowledge bases may then contain, in addition to ordinary ABoxes and TBoxes, subsumption relations of the form “T(C) is subsumed by P”, expressing that typical C-members have the property P. The semantics of a typicality operator is defined by a set of postulates that are strongly related to Kraus-Lehmann-Magidor axioms of preferential logic P. We first show that T enjoys a simple semantics provided by ordinary structures equipped by a preference relation. This allows us to obtain a modal interpretation of the typicality operator. Using such a modal interpretation, we present a tableau calculus for deciding satisfiability of ALC + T knowledge bases. Our calculus give...

References (13)

  1. Baader, F. and B. Hollunder, Embedding defaults into terminological knowledge representation formalisms, Journal of Automated Reasoning 14 (1995), pp. 149-180.
  2. Baader, F. and B. Hollunder, Priorities on defaults with prerequisites, and their application in treating specificity in terminological default logic, Journal of Automated Reasoning 15 (1995), pp. 41-68.
  3. Bonatti, P. A., C. Lutz and F. Wolter, Description logics with circumscription., in: Proceedings of KR, 2006, pp. 400-410.
  4. Buchheit, M., F. M. Donini and A. Schaerf, Decidable reasoning in terminological knowledge representation systems, Journal of Artificial Intelligence Research (JAIR) 1 (1993), pp. 109-138.
  5. Donini, F. M., M. Lenzerini, D. Nardi, W. Nutt and A. Schaerf, An epistemic operator for description logics, Artificial Intelligence 100 (1998), pp. 225-274.
  6. Donini, F. M., D. Nardi and R. Rosati, Description logics of minimal knowledge and negation as failure, ACM Transactions on Computational Logic (ToCL) 3 (2002), pp. 177-225.
  7. Eiter, T., T. Lukasiewicz, R. Schindlauer and H. Tompits, Combining answer set programming with description logics for the semantic web, in: Proceedings of KR, 141-151, 2004.
  8. Giordano, L., V. Gliozzi, N. Olivetti and G. L. Pozzato, Analytic Tableaux Calculi for KLM Rational Logic R, in: M. Fisher, W. van der Hoek, B. Konev and A. Lisitsa, editors, Proceedings of JELIA 2006, LNAI 4160, pp. 190-202.
  9. Giordano, L., V. Gliozzi, N. Olivetti and G. L. Pozzato, Analytic Tableaux for KLM Preferential and Cumulative Logics, in: G. Sutcliffe and A. Voronkov, editors, Proceedings of LPAR 2005, LNAI 3835, pp. 666-681.
  10. Giordano, L., V. Gliozzi, N. Olivetti and G. L. Pozzato, Preferential Description Logics, in: N. Dershowitz and A. Voronkov, editors, Proceedings of LPAR 2007, LNAI 4790, pp. 257-272.
  11. Giugno, R. and T. Lukasiewicz, P-SHOQ(D): A Probabilistic Extension of SHOQ(D) for Probabilistic Ontologies in the Semantic Web, in: S. Flesca, S. Greco, N. Leone and G. Ianni, editors, Proceedings of JELIA 2002, LNAI 2424, pp. 86-97.
  12. Kraus, S., D. Lehmann and M. Magidor, Nonmonotonic reasoning, preferential models and cumulative logics, Artificial Intelligence 44 (1990), pp. 167-207.
  13. Straccia, U., Default inheritance reasoning in hybrid kl-one-style logics, in: Proceedings of IJCAI, 1993, pp. 676-681.