Gabor frames and asymptotic behavior of Schwartz distributions
2016, Applicable Analysis and Discrete Mathematics
https://doi.org/10.2298/AADM160511011KAbstract
We obtain characterizations of asymptotic properties of Schwartz distribution by using Gabor frames. Our characterizations are indeed Tauberian theorems for shift asymptotics (S-asymptotics) in terms of short-time Fourier transforms with respect to windows generating Gabor frames. For it, we show that the Gabor coefficient operator provides (topological) isomorphisms of the spaces of tempered distributions S (R d) and distributions of exponential type K 1 (R d) onto their images.
References (26)
- C. Bargetz, N. Ortner, Characterization of L. Schwartz' convolutor and multiplier spaces O C and O M by the short-time Fourier transform, Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Math. RACSAM 108 (2014), 833-847.
- H. Bölcskei, A. J. E. M. Janssen, Gabor frames, unimodularity, and window decay, J. Fourier Anal. Appl. 6 (2000), 255-276.
- S.-Y. Chung, D. Kim, S. Lee, Characterization for Beurling-Björck space and Schwartz space, Proc. Amer. Math. Soc. 125 (1997), 3229-3234.
- R. Estrada, R. P. Kanwal, A distributional approach to asymptotics. Theory and applications, Second edition, Birkhäuser, Boston, 2002.
- K. Gröchenig, Foundations of time-frequency analysis, Birkhäuser Boston, Boston, MA, 2001.
- M. Hasumi, Note on the n-dimensional tempered ultra-distributions, Tôhoku Math. J. 13 (1961), 94-104.
- M. Holschneider, Wavelets. An analysis tool, The Clarendon Press, Oxford University Press, New York, 1995.
- R. F. Hoskins, J. Sousa Pinto, Theories of generalised functions. Distributions, ultradistributions and other generalised functions, Horwood Publishing Limited, Chichester, 2005.
- A. J. E. M. Janssen, Duality and biorthogonality for Weyl-Heisenberg frames, J. Fourier Anal. Appl. 1 (1995), 403-437.
- K. Johansson, S. Pilipović, N. Teofanov, J. Toft, Gabor pairs, and a discrete approach to wave- front sets, Monatsh. Math. 166 (2012), 181-199.
- S. Kostadinova, S. Pilipović, K. Saneva, J. Vindas, The ridgelet transform and quasiasyptotic behavior of distributions, in: Pseudo-Differential Operators and Generalized Functions, pp. 185- 197. Oper. Theory Adv. Appl., vol. 245, Birkhäuser, Heidelberg-New York-Dordrecht-London, 2015.
- S. Kostadinova, S. Pilipović, K. Saneva, J. Vindas, The short-time Fourier transform of dis- tributions of exponential type and Tauberian theorems for S-asymptotics, FILOMAT, in press (preprint: arXiv:1312.0986).
- S. Kostadinova, J. Vindas, Multiresolution expansions of distributions: pointwise convergence and quasiasymptotic behavior, Acta Appl. Math. 138 (2015), 115-134.
- O. P. Misra, J. L. Lavoine, Transform analysis of generalized functions, North-Holland Publish- ing Co., Amsterdam, 1986.
- S. Pilipović, B. Stanković, Wiener Tauberian theorems for distributions, J. London Math. Soc. (2) 47 (1993), 507-515.
- S. Pilipović, B. Stanković, J. Vindas, Asymptotic behavior of generalized functions, Series on Analysis, Applications and Computation, 5., World Scientific Publishing Co. Pte. Ltd., Hack- ensack, NJ, 2012.
- S. Pilipović, N. Teofanov, Multiresolution expansion, approximation order and quasiasymptotic behavior of tempered distributions, J. Math. Anal. Appl. 331 (2007), 455-471.
- S. Pilipović, J. Vindas, Multidimensional Tauberian theorems for vector-valued distributions, Publ. Inst. Math. (Beograd) 95 (2014), 1-28.
- L. Rodino, P. Wahlberg, The Gabor wave front set, Monatsh. Math. 173 (2014), 625-655.
- K. Saneva, R. Aceska, S. Kostadinova, Some Abelian and Tauberian results for the short-time Fourier transform, Novi Sad J. Math. 43 (2013), 81-89.
- K. Saneva, J. Vindas, Wavelet expansions and asymptotic behavior of distributions, J. Math. Anal. Appl. 370 (2010), 543-554.
- E. Seneta, Regularly varying functions, Springer-Verlag, Berlin, 1976.
- B. K. Sohn, Quasiasymptotics in exponential distributions by wavelet analysis, Nihonkai Math. J. 23 (2012), 21-42.
- J. Vindas, S. Pilipović, D. Rakić, Tauberian theorems for the wavelet transform, J. Fourier Anal. Appl. 17 (2011), 65-95.
- V. S. Vladimirov, Yu. N. Drozhzhinov, B. I. Zavialov, Tauberian theorems for generalized func- tions, Kluwer Academic Publishers Group, Dordrecht, 1988.
- Y. Yang, R. Estrada, Asymptotic expansion of thick distributions, Asymptot. Anal. 95 (2015), 1-19. Faculty of Electrical Engineering and Information Technologies, Ss. Cyril and Methodius University, Rugjer Boshkovik bb, 1000 Skopje, Macedonia E-mail address: ksanja@feit.ukim.edu.mk