Academia.eduAcademia.edu

Outline

Gabor frames and asymptotic behavior of Schwartz distributions

2016, Applicable Analysis and Discrete Mathematics

https://doi.org/10.2298/AADM160511011K

Abstract

We obtain characterizations of asymptotic properties of Schwartz distribution by using Gabor frames. Our characterizations are indeed Tauberian theorems for shift asymptotics (S-asymptotics) in terms of short-time Fourier transforms with respect to windows generating Gabor frames. For it, we show that the Gabor coefficient operator provides (topological) isomorphisms of the spaces of tempered distributions S (R d) and distributions of exponential type K 1 (R d) onto their images.

References (26)

  1. C. Bargetz, N. Ortner, Characterization of L. Schwartz' convolutor and multiplier spaces O C and O M by the short-time Fourier transform, Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Math. RACSAM 108 (2014), 833-847.
  2. H. Bölcskei, A. J. E. M. Janssen, Gabor frames, unimodularity, and window decay, J. Fourier Anal. Appl. 6 (2000), 255-276.
  3. S.-Y. Chung, D. Kim, S. Lee, Characterization for Beurling-Björck space and Schwartz space, Proc. Amer. Math. Soc. 125 (1997), 3229-3234.
  4. R. Estrada, R. P. Kanwal, A distributional approach to asymptotics. Theory and applications, Second edition, Birkhäuser, Boston, 2002.
  5. K. Gröchenig, Foundations of time-frequency analysis, Birkhäuser Boston, Boston, MA, 2001.
  6. M. Hasumi, Note on the n-dimensional tempered ultra-distributions, Tôhoku Math. J. 13 (1961), 94-104.
  7. M. Holschneider, Wavelets. An analysis tool, The Clarendon Press, Oxford University Press, New York, 1995.
  8. R. F. Hoskins, J. Sousa Pinto, Theories of generalised functions. Distributions, ultradistributions and other generalised functions, Horwood Publishing Limited, Chichester, 2005.
  9. A. J. E. M. Janssen, Duality and biorthogonality for Weyl-Heisenberg frames, J. Fourier Anal. Appl. 1 (1995), 403-437.
  10. K. Johansson, S. Pilipović, N. Teofanov, J. Toft, Gabor pairs, and a discrete approach to wave- front sets, Monatsh. Math. 166 (2012), 181-199.
  11. S. Kostadinova, S. Pilipović, K. Saneva, J. Vindas, The ridgelet transform and quasiasyptotic behavior of distributions, in: Pseudo-Differential Operators and Generalized Functions, pp. 185- 197. Oper. Theory Adv. Appl., vol. 245, Birkhäuser, Heidelberg-New York-Dordrecht-London, 2015.
  12. S. Kostadinova, S. Pilipović, K. Saneva, J. Vindas, The short-time Fourier transform of dis- tributions of exponential type and Tauberian theorems for S-asymptotics, FILOMAT, in press (preprint: arXiv:1312.0986).
  13. S. Kostadinova, J. Vindas, Multiresolution expansions of distributions: pointwise convergence and quasiasymptotic behavior, Acta Appl. Math. 138 (2015), 115-134.
  14. O. P. Misra, J. L. Lavoine, Transform analysis of generalized functions, North-Holland Publish- ing Co., Amsterdam, 1986.
  15. S. Pilipović, B. Stanković, Wiener Tauberian theorems for distributions, J. London Math. Soc. (2) 47 (1993), 507-515.
  16. S. Pilipović, B. Stanković, J. Vindas, Asymptotic behavior of generalized functions, Series on Analysis, Applications and Computation, 5., World Scientific Publishing Co. Pte. Ltd., Hack- ensack, NJ, 2012.
  17. S. Pilipović, N. Teofanov, Multiresolution expansion, approximation order and quasiasymptotic behavior of tempered distributions, J. Math. Anal. Appl. 331 (2007), 455-471.
  18. S. Pilipović, J. Vindas, Multidimensional Tauberian theorems for vector-valued distributions, Publ. Inst. Math. (Beograd) 95 (2014), 1-28.
  19. L. Rodino, P. Wahlberg, The Gabor wave front set, Monatsh. Math. 173 (2014), 625-655.
  20. K. Saneva, R. Aceska, S. Kostadinova, Some Abelian and Tauberian results for the short-time Fourier transform, Novi Sad J. Math. 43 (2013), 81-89.
  21. K. Saneva, J. Vindas, Wavelet expansions and asymptotic behavior of distributions, J. Math. Anal. Appl. 370 (2010), 543-554.
  22. E. Seneta, Regularly varying functions, Springer-Verlag, Berlin, 1976.
  23. B. K. Sohn, Quasiasymptotics in exponential distributions by wavelet analysis, Nihonkai Math. J. 23 (2012), 21-42.
  24. J. Vindas, S. Pilipović, D. Rakić, Tauberian theorems for the wavelet transform, J. Fourier Anal. Appl. 17 (2011), 65-95.
  25. V. S. Vladimirov, Yu. N. Drozhzhinov, B. I. Zavialov, Tauberian theorems for generalized func- tions, Kluwer Academic Publishers Group, Dordrecht, 1988.
  26. Y. Yang, R. Estrada, Asymptotic expansion of thick distributions, Asymptot. Anal. 95 (2015), 1-19. Faculty of Electrical Engineering and Information Technologies, Ss. Cyril and Methodius University, Rugjer Boshkovik bb, 1000 Skopje, Macedonia E-mail address: ksanja@feit.ukim.edu.mk