Feb03-fractured-reservoirs
…
6 pages
1 file
Sign up for access to the world's latest research
Abstract
AI
AI
This paper discusses the complexities and evaluations necessary in naturally fractured reservoirs (NFRs) for hydrocarbon exploration and production. It emphasizes the need for detailed geological classification, assessment of fracture properties, and the significance of in-situ stress dynamics on fluid flow. The author predicts advancements in core evaluations, imaging logs, and reservoir simulation models, aiming for improved hydrocarbon recovery through enhanced drilling techniques.
Key takeaways
AI
AI
- Understanding the complexities of naturally fractured reservoirs requires individualized study for each reservoir.
- Natural fractures can significantly impact fluid flow; thus, detailed geologic characterization is essential.
- Reservoirs are classified into three types (A, B, C), influencing hydrocarbon storage and production strategies.
- Quantifying matrix and fracture properties enhances the accuracy of recovery forecasts and reserve estimates.
- Recent advances in seismic and simulation technology promise improved characterization of fractured reservoirs.




Related papers
Tectonophysics, 2010
Fractures can play an important role in the fluid storage-migration properties of fault damage zones. In this present contribution, we document the role exerted by fractures on fluid flow in carbonate damage zones of hydrocarbon-bearing, km-long, oblique-slip normal faults with 10's of m-throw. The carbonate fault damage zones were analysed by mean of scan line surveys conducted in both tar-free and tar-rich outcrops. In this way, the relationships among the individual fracture characteristics (length, spacing, aperture, orientation, connectivity and distance from slip surfaces pertaining to small faults of the fault damage zones) and hydrocarbons have been established. Data obtained by scan line surveys were also used to compute the amount of fracture porosity, the degree of fracture connectivity and, based upon simple assumptions, the orientation of the local σ hmax at times of faulting. Additionally, scan line surveys were also carried out along outcrops exposing unfaulted carbonate host rocks. The results of our computation are consistent with a carbonate host rock made up of a quite isotropic fracture array comprised of isolated and coupled fractures, in which individual fracture sets have negative exponential spacing distributions. In terms of fluid flow, the fracture array of the carbonate host rock enhances the fluid storage. Conversely, the fracture array of the fault damage zones is characterized by a pronounced anisotropy due to interconnected fractures, which enhance the fluid migration. Fractures in the fault damage zones include those inherited from background deformation and others related to the faulting processes. The latter fracture sets are characterized by power law spacing distributions. In conclusion, counter-intuitively, both fracture length and fracture spacing do not have any correlation with hydrocarbons in the fault damage zones. On the contrary, fracture anisotropy, fracture spread and fracture orientation are positively correlated with hydrocarbons.
2015
A benchmark synthetic fractured reservoir dataset is built comprising about two million grid cells with details on geological, geomechanical and geophysical properties. This synthetic dataset is intended to serve as a test bed for algorithms and workflows aimed at prediction of subsurface geology, reservoir modeling and forecasting in fractured reservoirs. The synthetic model starts with a three-layered subsurface geology reflecting aeolian, fluvial and coastal environments and major sealing faults that dissect the domain into a "core", "graben" and a "horst" area. The entire reservoir is populated with relevant facies properties, porosity and permeability. Fracture intensity and orientation distributions are computed from geomechanical constraints. The influence of these fractures on elastic properties and seismic responses is evaluated based on computation of the effective elastic stiffness tensor. A subset within the middle-layer of the core region is considered to be the "area of interest". This region is populated with fractures invoking a discrete fracture network (DFN) model by taking into account fracture intensity and orientations computed from geomechanical constraints. Next, two new intensity maps are generated by assuming an unknown subsurface and that the only available data come from wells drilled into the area of interest and seismic properties. A set of ninety-six DFN models are then generated based on these maps and orientation data from the wells. Finally, these are compared to each other by means of flow response curves. Distance-based sensitivity analysis (DGSA) is invoked for determining DFN parameters that mostly influence flow in a reservoir.
Bulletin of the Geological Society of Malaysia, 2012
Fractured reservoirs are challenging to handle because of their high level of heterogeneity. In particular, natural fractures have a significant impact on well performance and water production. Therefore, understanding their significance through fracture characterization is helpful in well placement and field development. This paper presents a best practice methodology for building a 3D stochastic fracture model using a Middle Eastern tight carbonate field example. This model is generated through the analysis and integration of data including cores, borehole images (BHI), logs, mud losses, production logs, well test data and 3D seismic data. The impact of lithology on fracture occurrence was quantified based on rock-typing. Rock-types are distributed in a 3D geological model using a high resolution sequence stratigraphic framework. The length, dip angle and orientation of fractures, together with the shale content of the facies where they occur, were defined to sort the tectonic fractures from the non-tectonic (diagenetic) ones. It was found that multiple sets of tectonic diffuse fractures are generally associated with cleaner limestone units. Altogether, three sets of diffuse fractures were identified from BHI data: NE-SW, EW and NW-SE. In addition, large-scale fracture corridors, including sub-seismic faults identified from seismic analysis, were detected and calibrated with cores and BHI. The final model incorporates two scales of tectonic fractures with a direct bearing on field production behavior: diffuse fractures and large fracture corridors. Fracture calibration was performed using production logs and well production data. Permeability at wells was computed in the 3D fracture model and matched with real build-up data. These data were then used to propagate 3D fracture properties (fracture porosity, fracture permeability and equivalent block size) in the upscaled geological model, for constructing a full-field reservoir simulation model. Few changes of the fracture properties were needed to obtain a good history match, indicating that the fracture model produced is robust.
The Leading Edge, 2011
2010
Sanjay Srinivasan. I consider myself extremely privileged to get an opportunity to work with him. I want to thank him for being so supportive over the last two years and sharing his immense knowledge with me. I learnt a lot under his guidance not only making me a technical sound engineer but also a better person. He will always be a source of inspiration for me to achieve better and bigger goals in my life. I would also like to thank to Dr. Mrinal Sen to be so patient and accommodating with my thesis and providing me with valuable feedbacks. I would also like to extend my earnest regards to my research group, especially
ECMOR IX - 9th European Conference on the Mathematics of Oil Recovery, 2004
Construction of a static reservoir model for a fractured reservoir will typically involve some or all of the following steps: selection of the fracture sets to be considered; identification of the spatial distribution of these fracture sets; modeling of the fractures as objects; assignment of appropriate petrophysical properties to the fractures, in particular permeability; communication with a flow simulator. For each fracture set that is to be modeled, trend information for density, orientation and dip is chosen to control the spatial distribution. If the fracture set is related to a faulting event then a model of the stress distribution for that event may well be the most appropriate way to associate trend data with the set. On the other hand, for a simple fold, curvature may be a more appropriate predictor of fracture distribution. In simple situations, where the reservoir behavior may be described with a single permeability model, it is possible to try and calibrate the fracture trend information directly to interpreted well test permeability to produce an effective permeability model combining the effect of matrix and fracture permeability. In situations where the fluid transfer from matrix to fracture occurs at a rate that is significantly slower than flow within the fractures, it is necessary to use a dual media approach to the flow simulation. In this case the flow simulator needs to be supplied with permeability models for both the matrix and the fracture and one or more terms which govern the transfer of fluid from matrix to fracture. To supply this information a discrete fracture model is built following the trend information for each fracture set. The appropriate parameters for flow simulation are then calculated.
Geophysical Prospecting, 2010
Outcrop studies reveal a common occurrence of tabular zones of significantlyincreased fracture intensity affecting otherwise well-lithified rocks. These zones, called fracture corridors, can have a profound effect on multi-phase fluid flow in the subsurface. Using standard geo-modelling tools, it is possible to generate 3D realizations of reservoirs that contain distributions of such fracture corridors that are consistent with observations, including the vertical frequency in pseudo-wells inserted into the model at random locations. These models can generate the inputs to flow simulation. The approach adopted here is to run the flow simulations in a single-porosity representation where the flow effects of fractures are upscaled into equivalent cellbased properties, preserving a clear spatial relationship between the input geology and the resulting cellular model. The simulated reservoir performance outcomes are very similar to those seen in real oilfields: extreme variability between wells, early water breakthrough, disappointing recoveries and patchy saturation distributions. Thus, a model based on fracture corridors can provide an explanation for the observed flow performance of a suitable field. However, the use of seismics to identify fracture corridors is not an easy task. New work is needed to predict the seismic responses of fracture corridor systems to be able to judge whether it is likely that we can robustly detect and characterize these flow-significant features adequately.
Type I fractured reservoirs are those in which the matrix is impermeable and fractures provide essentially all of the storage capacity and the fluid-flow pathways in the reservoir. This paper summarizes an analog reservoir study that compared the performance of dozens of such reservoirs to understand their behavior when strong water drives are present and particularly when oil viscosities are moderately high. Most such reservoirs are basement or volcanic rocks; however, numerous analogous clastic and carbonate reservoirs have also been identified. Recoveries in " Type I " reservoirs access a larger fraction of the oil-in-place in the fractures and very little matrix oil. Fracture recoveries can be expected to be very high (60 to 90% of the swept fracture volume) with extremely low recoveries in the matrix. Fracture porosities vary widely in fractured reservoirs and analogs may be poor sources of this information. Values of fracture porosity in excess of 1.0% are uncommon; however, some fields may have values up to about 3% or higher for certain fractured cherts. Strong water drives can lead to high initial flow rates and relatively early water breakthrough; true Type I reservoirs may have very poor recoveries as a result. Horizontal wells often accelerate total recovery and may in fact lead to substantial incremental recovery. Heavier oils exacerbate early water breakthrough. Few reservoirs with significant fracturing were consistently fractured areally and with depth. Heterogeneity in fracturing is the rule and has few exceptions. In some many cases identifying the driving cause of spatial heterogeneity in fracture occurrence is the key to developing the field properly. Water shutoff efforts around the world in highly fractured reservoirs are generally failures. Treatments that successfully shut off water often greatly reduce oil production. This is particularly true of horizontal wells and most true of uncemented liners and open holes. Only in cased and cemented vertical or horizontal wells is there a routine chance of shutting off completion intervals. In many such cases, profile control improvements are temporary as the unwanted fluid bypasses the near-wellbore shutoff area. Gas influx is generally more severe than water influx. Horizontal well placement is critical in developing Type I reservoirs and is a function of reservoir management and fracture characterization. Multiple laterals offer attractive operational and cost alternatives. Overdrilling similar reservoirs appears to have occurred in quite a few fields. Example fields from around the world are compared using a variety of approaches including some unique comparisons of temperature logs and pressure transient analysis tests.
Geologic and Engineering Aspects of Naturally Fractured Reservoirs
Roberto Aguilera, Servipetrol Ltd., Calgary, Canada
I am convinced significant volumes of hydrocarbons reside in naturally fractured reservoirs - particularly in fields abandoned because of improper testing and evaluation or because the wells did not intersect the fractures. 1 Rules of thumb and naturally fractured reservoirs do not mix well. What appears to work in one might fail miserably in the next. Consequently, each naturally fractured reservoir (nfr) exploration play and each nfr under production must be considered as a research project by itself.
Geologic Aspects
Stearns 2 defines a natural fracture as a macroscopic planar discontinuity that results from stresses that exceed the rupture strength of the rock. These natural fractures can have a positive, neutral, or negative effect on fluid flow. 3 In my opinion, virtually all reservoirs contain at least some natural fractures. However, if the effect of these fractures on fluid flow is negligible, the reservoir can be treated, from a geologic and reservoir engineering perspective, as a “conventional” reservoir.
For reservoirs where the fractures have a positive or negative effect on fluid flow, it is of paramount importance to have knowledge of magnitude and direction of in-situ principal stresses; azimuth, dip, spacing, and aperture of fractures; matrix and fracture porosity, matrix and fracture permeability, and matrix and fracture water saturation. These data help in calculations of how the in-place hydrocarbons are distributed between matrix and fractures, and the flow capacity of the wells.
All naturally fractured reservoirs are not created equal. I am not sure if I read the previous sentence somewhere, if I heard it from somebody, or if I thought about it. Notwithstanding, I believe it is a very accurate statement, which means that we have to somehow classify and characterize the reservoir. This provides an important link between the geophysical, geological and engineering disciplines.
In addition to the fracture and matrix properties mentioned above, I recommend (1) classifying the reservoir from a geologic point of view keeping in mind that the fractures can be tectonic, regional or contractional, (2) evaluating the pore system, (3) quantifying the relative hydrocarbon storativity of matrix and fractures, and (4) getting a good idea with respect to the matrix/fracture interaction.
Geologic Classification
From a geologic point of view the fractures can be classified as being tectonic (fold and/or fault related), regional, contractional (diagenetic), and surface related 1,4. Historically most hydrocarbon production has been obtained from tectonic fractures, followed by regional fractures and followed by contractional fractures. In general, surface related fractures are not important from the point of view of hydrocarbon production. When classifying fractures
determine magnitude and direction of in-situ principal stresses; azimuth, dip, spacing, and if possible aperture of fractures.
Pore Classification
It is possible to make preliminary estimates of productive characteristics of common reservoir porosity types following a classification proposed by Coalson et al. 4 In this classification, porosity classes are defined first by the geometry of the pores, and second by pore size. Included in the geometry are the following general pore categories: intergranular, intercrystalline, vuggy, and fracture. The combination of any of them can give origin to dual and even multi-porosity behavior. 5
The pore size can be recognized from different techniques, including Winland 6r25 and Aguilera 6r45 pore throat apertures. Included in the pore size are megaporosity ( r25>10 microns), macroporosity ( r50 between 2 and 10 microns), mesoporosity ( r50 between 0.5 and 2 microns) and microporosity ( r50<0.5 microns). Martin et al. 7 have indicated that megaports are capable of flowing tens of thousands of barrels per day, macroports thousands of barrels per day, mesoports hundreds of barrels of oil per day, and microports tens of barrels per day. Figure 1 shows a graph for estimating values of Ry35 for the matrix in naturally fractured reservoirs. The graph follows the same format presented by Martin et al. 7 using Winland’s equation.
Figure 1. Aguilera Ry35 pore throat radii as a function of matrix porosity and permeability.
Geologic and Engineering Aspects of Naturally Fractured Reservoirs
Continued from Page 44
The vast majority of papers and books on this subject discuss only fractures with apertures of a few microns. This is probably because of very poor core recovery from reservoirs containing fractures with much greater apertures. From laboratory work and experience it has been found that nut shells and plastic materials can stop circulation losses in fractures with apertures as large as 5000 microns. If in a given naturally fractured reservoir these materials cannot stop circulation losses the conclusion is reached that the apertures are bigger than 5000 microns at reservoir depth. In fact, secondary porosity apertures can actually reach cavern-size in some instances. Thus the generalized assumption that fractures cannot provide significant hydrocarbon storage is, in my opinion, not valid.
Storage Classification
From a storage point of view, fractured reservoirs can be classified 69 as being of Type A, B or C. Many reservoirs that would otherwise be non-productive are commercial thanks to the presence of natural fractures.
In reservoirs of Type A the bulk of the hydrocarbon storage is in the matrix porosity and a small amount of storage is in the fractures. The matrix typically has a very low permeability while the natural fractures tend to have a much larger permeability. But there are exceptions. For example, the matrix in the giant Saudi Arabian Ghawar reservoir has very large porosities and permeabilities. 10 In this type of reservoir the fractures are a curse rather than a blessing because they facilitate unwanted water channeling. In this instance, efforts that integrate geologic information, 3D seismic data, and transient pressure analysis are directed at avoiding rather than intersecting the fractures.
In reservoirs of Type B approximately half the hydrocarbon storage is in the matrix and half is in the fractures. The matrix is tight and the fractures are much more permeable than the matrix.
In reservoirs of Type C all the hydrocarbon storage is in the fractures with no contribution from the matrix. Thus in this instance the fractures provide both the storage and the necessary permeability to achieve commercial production.
There are many reservoirs with fractures of tectonic origin where the primary porosity (matrix) tends to be occluded or has extremely low permeability and consequently does not contribute any hydrocarbon storage. In these cases, a large number of microfractures might be present that play the role of “matrix” porosity. This is due to the pervasiveness of tectonic fractures that exist from a macro scale to the grain size scale (they are very fractal). In this case the combination of micro and macrofractures can lead to dual porosity behavior.
Matrix/Fracture Interaction
Cores provide an excellent source of direct information for determining the kind of interaction that could be anticipated from fractures and matrix. Consider different possibilities: 0
No Secondary Mineralization. Good luck or a teaser? When the natural fractures are open and have a negligible amount of
secondary mineralization the hydrocarbons move from the matrix to the fractures in an unrestricted way.
How quickly the fluids move from matrix to fractures is controlled by the amount of pressure drop in the fractures, and matrix properties such as permeability, porosity and compressibility, viscosity of the fluid flowing, and fracture spacing or size of the matrix blocks. These kinds of fractures can provide very high initial fluid rates. The major problem with this type of fractures is that they might tend to close as the reservoir is depleted depending on the in-situ stresses, the initial reservoir pressure and the reduction in pressure within the fractures. In these cases, fractures are much more compressible than the host rock.
If the reservoir is initially overpressured the fracture closure can be very significant leading to small hydrocarbon recovery, big headaches and major financial losses.
If the reservoir is initially underpressured the fracture closure is not as significant because most of the closure at reservoir depth has already occurred. Ultimate fractional recoveries will be bigger than in the previous case.
Some Secondary Mineralization. I think good luck! When natural fractures have a certain amount of secondary mineralization the fluid flow from matrix to fractures is somewhat restricted. From the point of view of pressure behavior during well testing this can be visualized as a natural skin within the reservoir (not to be confused with mechanical skin around the wellbore routinely calculated). Partial mineralization is a blessing in disguise. In this case, the secondary minerals will act as a natural proppant agent and fracture closure will be significantly reduced (not completely stopped) even in overpressured reservoirs. This in turn will lead to higher ultimate recoveries. The fracture closure will be smaller in normally pressured reservoirs, and even smaller in underpressured reservoirs.
Complete Secondary Mineralization. Bad Luck!! Even if there is a lot of hydrocarbon within the reservoir, the ultimate recovery will be low. The mineralized fractures will compartmentalize the reservoir leading to very low ultimate recoveries.
Vuggy Fractures. They can have very large porosities that can reach 100% in some intervals and several darcies of permeability. Production can be several thousands of barrels per day if the vugs are connected (touching vugs). Vuggy fractures present the advantage that they do not close due to their rounded shape. Nonconnected vugs provide non-effective porosity and permeability.
Engineering Aspects
Engineering aspects deal primarily with quantitative evaluation of naturally fractured reservoirs. This quantification links the geophysical, geologic and engineering disciplines. Some key goals are to estimate hydrocarbons-in-place, forecast production rates, and improve ultimate economic recoveries.
Characterization of the naturally fractured reservoir and engineering evaluations rely on direct and indirect sources of informa-
ARTICLE cont’d
Geologic and Engineering Aspects of Naturally Fractured Reservoirs
Continued from Page 45
tion. 9 The determination of flow (or hydraulic) units 10 is an important part of the characterization. Direct sources of information include cores, drill cuttings, downhole photographs and videos of the borehole. Indirect sources include outcrops, drilling history, mud log, conventional and specialized well logs, seismic information (preferentially 3D), well testing, inflatable packers, and production history.
Direct Sources of Information
They are very powerful because direct sources permit “seeing” the fractures categorically.
Cores. They represent the most important direct source of information. I recommend to always budget the necessary funds to core at least a few key wells. The successful study of a naturally fractured core must start at the well site. 12,13 The laboratory must be selected carefully, followed by meetings with laboratory personnel, and an inspection of the facilities where the experiments will be conducted. 14 Disruption of the fractured core must be minimized by using double-tube core barrels, which have successfully replaced rubber-sleeve coring methods. Disposable inner liners made of aluminum or fiberglass can provide good coring results because of their low friction coefficients and ability to prevent jamming. 15 In case of some disruption the core must be properly fitted together and marked with scribe lines to make sure that it is correctly laid out in the laboratory for fracture analysis. 12 The core should be preserved as best as possible, preferentially by wrapping it in plastic and placing it in ziplock bags. This precaution helps to prevent loss of reservoir fluids and/or core dehydration. In my opinion, oriented cores are advisable, although there is a trend in industry to orient cores with well log images (which are indirect sources of information).
A modern comprehensive analysis should include at least the following evaluations: 14
- Fracture types description
- Grain density
- Petrophysical parameters m an n (m at simulated conditions of net overburden)
- Whole core porosity and permeability (at room conditions and some samples at simulated net overburden pressure)
- Routine core analysis
- Capillary pressures and relative permeabilities
- Wettability determination in a preserved core
- Imbibition recoveries if the rock proves to be water wet
- Mechanical testing (Poisson’s ratio, Young’ modulus, stressstrain analysis, matrix and fracture compressibility)
- Thin section analysis
- SEM (scanning electron microscopy) analysis
- Epoxy impregnation
- Spectrometric gamma ray and sonic velocity
- Solubility
- Non-destructive permeability determinations with a pressure decay profile permeameter
- Core scale pressure transient analysis 15 and microsimulation of the fractured core. 16
Drill Cuttings. Many times natural fractures may not be preserved in cuttings due to breakage along cuttings.
Consequently, the reservoir might be naturally fractured even if the cuttings do not show any fractures. However, there are exceptions. Hews 17 has indicated that there are instances where cuttings can provide very useful information with respect to fractures. He indicates, and I had the opportunity to see it, that “with the samples wetted, internal textures including fractures and brecciation are more apparent. Dry samples are best to see any porosity that may be associated with a fracture plane.” Under these circumstances it is advisable to examine the cuttings thinking in terms of natural fractures. Crystals on the face of a fracture can be indicative of very effective fracture porosity. Thin sections from cuttings can also provide evidence of natural fractures. Cemented microfractures in thin sections can be extensions of larger open fractures.
Downhole Borehole Cameras. Photos and video tapes can provide direct information regarding many features penetrated by the borehole including natural fractures, faulting, bed boundaries, hole size and hole shape. There are video cameras that have been developed to examine vertical, slanted and horizontal wells. Airdrilled, low pressure reservoirs are prime candidates for application of video camera technology. 18
Indirect Sources of Information
They include outcrops, drilling history, mud log, conventional and specialized well logs, seismic information (preferentially 3D), pressure data, inflatable packers, and production history.
Outcrops. There are essentially two schools of thought when it comes to the evaluation of outcrops. The first one indicates that 19 “using outcrop data to characterize the fracture pattern of a reservoir is frustrated by the stress release which occurs as rocks come to the surface” and that “outcrop data is unsuitable for modelling reservoir fractures.” The second school of thought indicates that outcrops, when properly evaluated, can provide a significant amount of valuable information in exploration plays and during the development of a reservoir. I strongly recommend you to adhere to the second school of thought. A properly conducted outcrop study can provide information on spacing, connectivity and orientation of the fractures relative to the structure and stratigraphy. If you are going to drill a horizontal well, for example, the outcrop can help you determine the optimum orientation of the well to maximize productivity. 20
Drilling History. It contributes valuable information regarding hydrocarbon shows, mud losses and penetration rates. Mud losses might be associated with natural fractures, vugs, underground caverns or induced fractures. Penetration rates can increase significantly while drilling all types of secondary porosity.
Well Logs. Logs are powerful indicators of natural fractures in some reservoirs. However, there is not a single log that is going to work all the time. I have used the following logs in the past, mostly from a qualitative point of view, to determine where the fractures are located: sonic amplitude, variable intensity, vertical seismic profiling, caliper, resistivity, Pe, borehole televiewer, dipmeter, spontaneous potential, density correction curve, borehole gravimeter, uranium index, temperature and noise logs. Details on
Geologic and Engineering Aspects of Naturally Fractured Reservoirs
Continued from Page 46
these techniques are available in the literature of the various service companies.
Quantitative analysis can be conducted from image logs to determine fracture orientation, dip, spacing, connectivity, fracture aperture and permeability. My experience with images for determining fracture orientation, dip and spacing is good. However, my experience with calculated apertures and permeabilities is a mixed bag. I recommend assigning value to these parameters only from a relative point of view.
Quantitative analysis can also be conducted for estimating fracture porosity 21 using dual porosity models, which are based on the observation that the porosity exponent of the fractures (mf) should be very close to 1.0. This is much smaller than the porosity exponent of the matrix (mb). The porosity exponent of the dual porosity system (matrix + fractures and/or connected vugs), m, varies between mf and mb . The smaller the degree of fracturing, the closer the value of m to mb . The larger the degree of fracturing, the closer the value of m to mf. In the case of dual porosity systems made out of matrix and non-connected (non-touching) vugs, the value of m is larger than mb. Care must be exercised when using dual porosity models, as the incorrect scaling of the matrix porosity can lead to errors in the calculation of water saturation. 21
Seismic Information. Significant advances have been achieved in 3D seismic technology that allow in some cases determination of fracture orientation, anisotropy and fracture density 22 and the type of fluid that could be present in the reservoir. Under favorable conditions, this can be estimated using AVO (amplitude vs. offset) and AVAZ (amplitude vs. azimuth) interpretation techniques.
Well Testing. This in an area that has also seen significant advances in the precision of the tools and the interpretation software packages. Modern formation testers can provide vertical information that cannot be detected by a standard test. Multiple probes can show the presence or lack of vertical interference in a wellbore. Automatic type curve matching is powerful but dangerous. To avoid fiascos with automatic matching, it is important to make sure that the engineer is always on top of the interpretation. Numerical 2D well testing models using unstructured Voronoi grids (PEBI) provide a significant and necessary extension to the more conventional Cartesian, semilogarithmic and log-log derivative crossplots.
A properly designed and supervised test can provide valuable information including fracture permeability, fracture porosity, and fracture spacing
in addition to usually estimated parameters such as skin, radius of investigation, extrapolated pressures, etc.
Production History. If from cores the permeability of a formation is 0.1 md , and the well produces 1,000 bopd, it can be inferred that the rate is the result of some type of secondary porosity, including fractures. Premature water or gas breakthrough in secondary recovery projects can also indicate the presence and strike of natural fractures. To avoid these unpleasant surprises, it is advisable to perform pressure interference tests early in the life of the reservoir.
Recovery Factors and Reserves
The optimum way of forecasting performance and recovery is utilizing a reservoir simulator as long as the reservoir characterization and the quality of the pressure and production data is good. Based on my experience, it is reasonable to forecast twice the time of available history. For example, if there are two years of good production and pressure data, it is reasonable to forecast four years of production.
Compressibility
If the reservoir is composed by matrix and fractures, the compressibility of the fractures is bigger than the compressibility of the matrix. The relative difference between the two compressibilities depends 3 on various factors including the amount of secondary mineralization within the fractures, the orientation of the fractures and in-situ stresses, and if the reservoir is over-pressured, normally pressured, or under-pressured.
CHART FOR ESTIMATING FRACTURE COMPRESSIBILITY
Figure 2. Chart for estimating fracture compressibility. MINER is the estimated percentage of secondary mineralization in the fractures. RATIO is fracture porosity divided by the summation of fracture porosity and connected vug porosity. (Source: Aguilera 3 )
Geologic and Engineering Aspects of Naturally Fractured Reservoirs
Continued from Page 47
Closing of the fractures once the reservoir goes on production can be very significant in over-pressured reservoirs. This can lead to huge declines in production rates. Fracture closure in underpressured reservoirs is less significant as most of the closure has already occurred.
In a dual porosity system made out of macro and microfractures (and without any primary porosity) the macrofractures play the role of “fractures” and the microfractures play the role of “matrix.” In this case, there are instances in which the microfractures (matrix) can be more compressible than the macrofractures (fractures). In other instances both compressibilities can be of the same order of magnitude.
Whenever possible, it is advisable to determine compressibilities in the laboratory using rocks from our own reservoir. If this is not available we have to rely on empirical correlations. Figure 2 shows a correlation 1 that I have used with reasonable success for a number years.
Ranges of Recovery
Each naturally fractured reservoir should be considered as a research project by itself. As such it has to be studied carefully to estimate recoveries. It is wise to remember that naturally fractured reservoirs and rules of thumb do not mix well. What appears to work in one reservoir might fail miserably in the next.
Tables 1 and 2 show some ranges of recoveries 5,23 based on my experience working with naturally fracture reservoirs worldwide for about 30 years. These oil and gas recovery estimates are presented for different recovery mechanisms and different types of fractured reservoirs. They are no panaceas. Use them carefully and only as order of magnitude indicators. There is no substitute for a detailed study.
Reservoir Type | |||
---|---|---|---|
Recovery Mechanism | A | B | C |
Depletion Drive | 10−20 | 20−30 | 30−35 |
Depletion Drive plus Gas Injection | 15−25 | 25−30 | 30−40 |
Depletion Drive plus Water Injection | 20−35 | 25−40 | 40−50 |
Depletion Drive plus Water Inj plus Gas Inj | 25−40 | 30−45 | 45−55 |
Gravity Segregation with Counterflow | 40−50 | 50−60 | >60 |
Depletion Drive plus Water Drive | 30−40 | 40−50 | 50−60 |
Depletion Drive plus Gas cap | 15−25 | 25−35 | 35−40 |
Depletion Drive Plus Gas cap plus Water Drive | 35−45 | 45−55 | 55−65 |
Table 1. Typical oil recoveries from naturally fractured reservoirs as a percent of original oil in place (Source: Aguilera 1 )
Reservoir Type | |||
---|---|---|---|
Recovery Mechanism | A | B | C |
Without Water Drive | 70−80 | 80−90 | >90 |
With Moderate Water Drive | 50−60 | 60−70 | 70−80 |
With Moderate Water Drive & Compression | 20−30 | 30−40 | 40−50 |
With Water Strong Drive | 15−25 | 25−35 | 35−45 |
Table 2. Typical gas recoveries from naturally fractured reservoirs as a percent of original gas in place (Source: Aguilera 1 )
Although in general, percent hydrocarbon recoveries from Type C reservoirs are larger than for Types A and B, the engineer has to be careful because usually the amount of hydrocarbon-inplace in Type C reservoirs is smaller.
Reserves
An excellent source 24 regarding proved, probable and possible oil and gas reserves is the Petroleum Society of CIM Monograph No. 1 published in 1994. When it comes to naturally fractured reservoirs, I recommend using statistical procedures to quantify the uncertainty associated with hydrocarbons-in-place and reserves.
Most naturally fractured reservoirs I am familiar with are characterized by low matrix porosities (less than 10%) and low matrix permeabilities (less than 1 md ). For these reservoir characteristics it is difficult to place a reasonable certainty of volumetric estimates of original hydrocarbons-in-place and reserves. As a consequence, I recommend placing reserves from volumetric estimates in the possible category. For matrix porosities larger than 10% and matrix permeabilities larger than 1 md the reserves can be moved to the probable category.
Early material balance calculations can provide estimates of probable reserves. As the cumulative production increases and with good quality pressure data (long flow and long shut-in times) the material balance reserves can be moved into the proved category.
I place production decline estimates from short history in an unproved category. Long production history leads to reasonable estimates of proved oil reserves. I do not recommend decline curves for estimating proved reserves of gas reservoirs unless the wells are at a late stage of production where a constant surface compression pressure is being utilized.
Beware of water influx in naturally fractured gas reservoirs. A well might be producing extremely well. But it is not unusual to see that the gas rate goes to nothing once water reaches the wellbore.
Reservoir simulation, although imperfect, is the tool that in my opinion provides the most reliable source of information for estimating recoveries and proved reserves. A significant amount of high quality data is required. The longer the production history the more reliable are the forecasted results.
Early in the life of the reservoir when production history is short or non-existent, proved reserves can be estimated from well designed, well supervised interference tests using high precision pressure gauges. The larger the number of wells involved in the test the better. In addition to providing reserves, the test will give very useful information regarding anisotropy.
If the objective is estimating reserves by investigating both matrix and fractures, I do not recommend pulse tests with short flow and buildup periods. Long continuous flow times during the interference test are required to properly investigate both matrix and fractures.
Geologic and Engineering Aspects of Naturally Fractured Reservoirs
Continued from Page 48
If there is only one well in the naturally fractured reservoir, I recommend a long flow period following the collection of a good initial pressure. An estimate of the radius of investigation leads to a volumetric estimate of hydrocarbons-in-place within the investigated area. This requires a reasonable estimate of net pay, matrix and fracture porosity, and matrix and fracture hydrocarbon saturation.
A Review - and a Look Ahead
Since my early days working with naturally fractured reservoirs in the early seventies, I have seen extraordinary advances in the geophysical, geological and engineering fields. These advances have led to improved estimates of recoveries and reserves. These improvements will continue.
Over the next few years, I anticipate significant improvements in seismic technology to better characterize anisotropy of naturally fractured reservoirs.
There will be advances in the evaluation of whole cores and the uncertainty associated with estimates of fracture compressibility will be reduced.
Imaging logs will continue improving and this will lead to more reasonable estimates of fracture parameters.
More, better and more realistic well testing and reservoir simulation models will be developed. Simulation grids will be improved. Unstructured Voronoi (PEBI) grids in 3D will become standard features of well testing packages. Software “friendliness” will be a big part of these models. Coupled fluid flow and rock mechanics simulators that take into account normal and shear stresses will become functional.
Hydrocarbon recoveries will continue increasing as more deviated and horizontal wells are drilled underbalance to properly intersect (or if desired avoid) vertical and high inclination natural fractures. R
References
- Aguilera, R.: Geologic Aspects of Naturally Fractured reservoirs, The Leading Edge (December 1998), pp. 1667-1670.
- Slearns, D. W.: AAPG Fractured Reservoirs School Notes, Great Falls, Montana (19821994).
- Nelson, R., Geologic Analysis of Naturally Fractured Reservoirs, Contributions in Petroleum geology and engineering, Vol. 1, Gulf Publishing Co., Houston, Texas (1985).
- Coalson, E. B., Hartmann, D. J., and Thomas, J. B.: Productive Characteristics of Common Reservoir Porosity Types, Bulletin of the South Texas Geological Society, v. 15, No. 6 (February 1985), pp. 35-51.
- Aguilera, Roberto: Recovery Factors and Reserves on Naturally Fractured Reservoirs, Journal of Canadian Petroleum Technology, Distinguished Authors Series (July 1999), p. 15-18.
- Aguilera, R.: Incorporating Capillary Pressure, Pore Throat Aperture Radii, Height Above Fore Water Table, and Winland v35 Values on Pickett Plots, AAPG Bulletin, v. 86, no. 4 (April 2002), p. 605-624.
- Martin, A. J. et al.: Characterization of Petrophysical Flow Units in Carbonate Reservoirs, AAPG Bulletin, v. 83, no. 7 (May 1997), p. 734-759.
- McNaughton, D. A. and Garb, F. A.: Finding and Evaluating Petroleum Accumulations in Fractured Reservoir Rock, Exploration and Economics of the Petroleum Industry, v. 13, Matthew Bender & Company Inc. (1975).
- Aguilera, R.: Naturally Fractured Reservoirs, PennWell Books, Tulsa, Oklahoma (1995), 521 p.
- Al-Thawad F. et al.: Optimizing Horizontal Well Placement in the Faulted Ghawar Field by Integrating Pressure Transient and 3D Seismic, SPE 62986 presented at the 2000 SPE Annual Technical Conference and Exhibition in Dallas, Texas (October 1-4, 2000).
- Aguilera, Roberto: Determination of Matrix Flow Units in Naturally Fractured Reservoirs, paper 2002-157 presented at the Petroleum Society’s Canadian International Petroleum Conference held in Calgary, Canada (June 11-13, 2002).
- Bergosh, J. L. et al.: New Core Analysis Techniques for Naturally Fractured Reservoirs, SPE paper 13653 presented at the California Regional Meeting Held in Bakersfield, California (March 27-29), 1985.
- Skopec, R. A.: Proper Coring and Website Core Handling Procedures: The First Step Towards Reliable Core Analysis, Journal of Petroleum Technology (April 1994) p. 280.
- Aguilera, R.: Advances in the Study of Naturally Fractured Reservoirs, The Journal of Canadian Petroleum Technology (May 1993), vol.32, no. 5, pp. 24-26.
- Kamath, J. et al.: Characterization of Core-Scale Heterogeneities Using Laboratory Pressure Transients, SPE Formation Evaluation (September 1992), p. 219-227.
- Au, A. D. and Aguilera, R.: Micro-simulation of Naturally Fractured Cores, Petroleum Society of CIM paper 94-79 presented at the Annual Technical Conference in Calgary, Canada (June 12-15, 1994).
- Hews, Peter: Structural Features that can be Identified from Drill Cuttings, Interpretations, Implications and Fracture Evaluation, Hara Consulting Ltd. Course Manual (October 2000).
- Overby, W. K. et al.: Analysis of Natural Fractures Observed by Borehole Video Camera in a Horizontal Well, SPE 17660 presented at the SPE Gas Technology Symposium held in Dallas, Texas (June 13-15, 1988).
- Akbar, M. et al.: Fractures in the Basement, Schlumberger Middle East Evaluation Review, Number 14 (1993), p. 26.
- Friedman, M. and McKiernan, D. E.: Extrapolation of Fracture Data from Outcrops of the Austin Chalk in Texas to Corresponding Petroleum Reservoirs at Depth, Journal of Canadian Petroleum Technology (October 1995), p. 43.
- Aguilera, M. S. and Aguilera, R.: Improved Models for Petrophysical Analysis of Dual Porosity Reservoirs, Petrophysics (January-February 2003).
- Gray, F. D. and Head, K. J.: Using 3D Seismic to Identify Variant Fracture Orientation in the Manderson Field, SPE 60296, Denver, Colorado (March 2000).
- Cronquist, C.: Estimation and Classification of Reserves of Crude Oil, Natural Gas, and Condensate, SPE, Richardson, Texas (2001), p. 150
- Determination of Oil and Gas Reserves, Petroleum Society of CIM Monograph No. 1, Calgary, Canada (1994).
Dr. Roberto Aguilera is president of Servipetrol Ltd. and an Adjunct Professor in the Chemical and Petroleum Engineering Department at the University of Calgary, where he concentrates in teaching about the theoretical and practical aspects of naturally fractured reservoirs. He is a petroleum engineering graduate from the Universidad de America at Bogota, Colombia and holds Masters and Ph.D. degrees in Petroleum Engineering from the Colorado School of Mines. He has presented his course on Naturally Fractured Reservoirs and has rendered consulting services throughout the world. He is a Distinguished Author of the Journal of Canadian Petroleum Technology, a recipient of the Outstanding Service Award from the Petroleum Society of CIM and a SPE Distinguished Lecturer on the subject of Naturally Fractured Reservoirs.
References (24)
- Aguilera, R.: Geologic Aspects of Naturally Fractured reservoirs, The Leading Edge (December 1998), pp. 1667-1670.
- Stearns, D. W.: AAPG Fractured Reservoirs School Notes, Great Falls, Montana (1982- 1994).
- Nelson, R., Geologic Analysis of Naturally Fractured Reservoirs, Contributions in Petroleum geology and engineering, Vol. 1, Gulf Publishing Co., Houston, Texas (1985).
- Coalson, E. B., Hartmann, D. J., and Thomas, J. B.: Productive Characteristics of Common Reservoir Porosity Types, Bulletin of the South Texas Geological Society, v. 15, No. 6 (February 1985), pp. 35-51.
- Aguilera, Roberto: Recovery Factors and Reserves on Naturally Fractured Reservoirs, Journal of Canadian Petroleum Technology, Distinguished Authors Series (July 1999), p. 15-18.
- Aguilera, R.: Incorporating Capillary Pressure, Pore Throat Aperture Radii, Height Above Free Water Table, and Winland r35 Values on Pickett Plots, AAPG Bulletin, v. 86, no. 4 (April 2002), p. 605-624.
- Martin, A. J. et al.: Characterization of Petrophysical Flow Units in Carbonate Reservoirs, AAPG Bulletin, v. 83, no. 7 (May 1997), p. 734-759.
- McNaughton, D. A. and Garb, F. A.: Finding and Evaluating Petroleum Accumulations in Fractured Reservoir Rock, Exploration and Economics of the Petroleum Industry, v. 13, Matthew Bender & Company Inc. (1975).
- Aguilera, R.: Naturally Fractured Reservoirs, PennWell Books, Tulsa, Oklahoma (1995), 521 p.
- Al-Thawad F. et al.: Optimizing Horizontal Well Placement in the Faulted Ghawar Field by Integrating Pressure Transient and 3D Seismic, SPE 62986 presented at the 2000 SPE Annual Technical Conference and Exhibition in Dallas, Texas (October 1-4, 2000).
- Aguilera, Roberto: Determination of Matrix Flow Units in Naturally Fractured Reservoirs, paper 2002-157 presented at the Petroleum Society's Canadian International Petroleum Conference held in Calgary, Canada (June 11-13, 2002).
- Bergosh, J. L. et al.: New Core Analysis Techniques for Naturally Fractured Reservoirs, SPE paper 13653 presented at the California Regional Meeting Held in Bakersfield, California (March 27-29), 1985.
- Skopec, R. A.: Proper Coring and Wellsite Core Handling Procedures: The First Step Towards Reliable Core Analysis, Journal of Petroleum Technology (April 1994) p. 280.
- Aguilera, R.: Advances in the Study of Naturally Fractured Reservoirs, The Journal of Canadian Petroleum Technology (May 1993), vol.32, no. 5, pp. 24-26.
- Kamath, J. et al.: Characterization of Core-Scale Heterogeneities Using Laboratory Pressure Transients, SPE Formation Evaluation (September 1992), p. 219-227.
- Au, A. D. and Aguilera, R.: Micro-simulation of Naturally Fractured Cores, Petroleum Society of CIM paper 94-79 presented at the Annual Technical Conference in Calgary, Canada (June 12-15, 1994).
- Hews, Peter: Structural Features that can be Identified from Drill Cuttings, Interpretations, Implications and Fracture Evaluation, Hara Consulting Ltd. Course Manual (October 2000).
- Overby, W. K. et al.: Analysis of Natural Fractures Observed by Borehole Video Camera in a Horizontal Well, SPE 17660 presented at the SPE Gas Technology Symposium held in Dallas, Texas (June 13-15, 1988).
- Akbar, M. et al.: Fractures in the Basement, Schlumberger Middle East Evaluation Review, Number 14 (1993), p. 26.
- Friedman, M. and McKiernan, D. E.: Extrapolation of Fracture Data from Outcrops of the Austin Chalk in Texas to Corresponding Petroleum Reservoirs at Depth, Journal of Canadian Petroleum Technology (October 1995), p. 43.
- Aguilera, M. S. and Aguilera, R.: Improved Models for Petrophysical Analysis of Dual Porosity Reservoirs, Petrophysics (January-February 2003).
- Gray, F. D. and Head, K. J.: Using 3D Seismic to Identify Variant Fracture Orientation in the Manderson Field, SPE 60296, Denver, Colorado (March 2000).
- Cronquist, C.: Estimation and Classification of Reserves of Crude Oil, Natural Gas, and Condensate, SPE, Richardson, Texas (2001), p. 150
- Determination of Oil and Gas Reserves, Petroleum Society of CIM Monograph No. 1, Calgary, Canada (1994).