Academia.eduAcademia.edu

Outline

Parietal maps of visual signals for bodily action planning

2021, Brain structure & function

https://doi.org/10.1007/S00429-021-02378-6

Abstract

The posterior parietal cortex (PPC) has long been understood as a high-level integrative station for computing motor commands for the body based on sensory (i.e., mostly tactile and visual) input from the outside world. In the last decade, accumulating evidence has shown that the parietal areas not only extract the pragmatic features of manipulable objects, but also subserve sensorimotor processing of others' actions. A paradigmatic case is that of the anterior intraparietal area (AIP), which encodes the identity of observed manipulative actions that afford potential motor actions the observer could perform in response to them. On these bases, we propose an AIP manipulative action-based template of the general planning functions of the PPC and review existing evidence supporting the extension of this model to other PPC regions and to a wider set of actions: defensive and locomotor actions. In our model, a hallmark of PPC functioning is the processing of information about the phy...

References (203)

  1. Abdollahi RO, Jastorff J, Orban GA (2013) Common and segregated processing of observed actions in human SPL. Cereb Cortex 23:2734-2753. https:// doi. org/ 10. 1093/ cercor/ bhs264
  2. Aflalo T, Zhang CY, Rosario ER, et al (2020) A shared neural substrate for action verbs and observed actions in human posterior parietal cortex. Sci Adv 6:. https:// doi. org/ 10. 1126/ sciadv. abb39 84
  3. Aglioti SM, Cesari P, Romani M, Urgesi C (2008) Action anticipation and motor resonance in elite basketball players. Nat Neurosci 11:1109-1116. https:// doi. org/ 10. 1038/ nn. 2182
  4. Albertini D, Gerbella M, Lanzilotto M et al (2020) Connectional gra- dients underlie functional transitions in monkey pre-supplemen- tary motor area. Prog Neurobiol 184:101699. https:// doi. org/ 10. 1016/j. pneur obio. 2019. 101699
  5. Alegre M, Rodríguez-Oroz MC, Valencia M et al (2010) Changes in subthalamic activity during movement observation in Parkinson's disease: is the mirror system mirrored in the basal ganglia? Clin Neurophysiol 121:414-425. https:// doi. org/ 10. 1016/j. clinph. 2009. 11. 013
  6. Andersen RA, Buneo CA (2002) Intentional maps in posterior parietal cortex. Annu Rev Neurosci 25:189-220. https:// doi. org/ 10. 1146/ annur ev. neuro. 25. 112701. 142922
  7. Andersen RA, Essick GK, Siegel RM (1985) Encoding of spatial loca- tion by posterior parietal neurons. Science 230:456-458. https:// doi. org/ 10. 1126/ scien ce. 40489 42
  8. Avila E, Lakshminarasimhan KJ, DeAngelis GC, Angelaki DE (2019) Visual and vestibular selectivity for self-motion in macaque pos- terior parietal area 7a. Cereb Cortex 29:3932-3947. https:// doi. org/ 10. 1093/ cercor/ bhy272
  9. Bakola S, Gamberini M, Passarelli L et al (2010) Cortical connec- tions of parietal field PEc in the macaque: linking vision and somatic sensation for the control of limb action. Cereb Cortex 20:2592-2604. https:// doi. org/ 10. 1093/ cercor/ bhq007
  10. Bakola S, Passarelli L, Huynh T, et al (2017) Cortical afferents and myeloarchitecture distinguish the medial intraparietal area (MIP) from neighboring subdivisions of the macaque cortex. eNeuro 4:ENEURO.0344-17.2017. https:// doi. org/ 10. 1523/ ENEURO. 0344-17. 2017
  11. Ball W, Tronick E (1971) Infant responses to impending collision: optical and real. Science 171:818-820. https:// doi. org/ 10. 1126/ scien ce. 171. 3973. 818
  12. Baumann MA, Fluet M-C, Scherberger H (2009) Context-specific grasp movement representation in the macaque anterior intrapa- rietal area. J Neurosci 29:6436-6448. https:// doi. org/ 10. 1523/ JNEUR OSCI. 5479-08. 2009
  13. Berger M, Agha NS, Gail A (2020) Wireless recording from unre- strained monkeys reveals motor goal encoding beyond immediate reach in frontoparietal cortex. Elife 9:. https:// doi. org/ 10. 7554/ eLife. 51322
  14. Berman RA, Wurtz RH (2010) Functional identification of a pulvinar path from superior colliculus to cortical area MT. J Neurosci 30:6342-6354. https:// doi. org/ 10. 1523/ JNEUR OSCI. 6176-09. 2010
  15. Bonini L, Ferrari PF (2011) Evolution of mirror systems: a simple mechanism for complex cognitive functions. Ann N Y Acad Sci 1225:166-175. https:// doi. org/ 10. 1111/j. 1749-6632. 2011. 06002.x
  16. Bonini L, Ferrari PF, Fogassi L (2013) Neurophysiological bases underlying the organization of intentional actions and the understanding of others' intention. Conscious Cogn 22:1095- 1104. https:// doi. org/ 10. 1016/j. concog. 2013. 03. 001
  17. Bonini L, Maranesi M, Livi A et al (2014) Space-dependent rep- resentation of objects and other's action in monkey ventral premotor grasping neurons. J Neurosci 34:4108-4119. https:// doi. org/ 10. 1523/ JNEUR OSCI. 4187-13. 2014
  18. Borghi AM, Riggio L (2015) Stable and variable affordances are both automatic and flexible. Front Hum Neurosci 9:351. https:// doi. org/ 10. 3389/ fnhum. 2015. 00351
  19. Borra E, Belmalih A, Calzavara R et al (2008) Cortical connections of the macaque anterior intraparietal (AIP) area. Cereb Cortex 18:1094-1111. https:// doi. org/ 10. 1093/ cercor/ bhm146
  20. Borra E, Rizzo M, Gerbella M et al (2021) Laminar origin of cor- ticostriatal projections to the motor putamen in the macaque brain. J Neurosci 41:1455-1469. https:// doi. org/ 10. 1523/ JNEUR OSCI. 1475-20. 2020
  21. Brandi M-L, Wohlschläger A, Sorg C, Hermsdörfer J (2014) The neural correlates of planning and executing actual tool use. J Neurosci 34:13183-13194. https:// doi. org/ 10. 1523/ JNEUR OSCI. 0597-14. 2014
  22. Bremmer F, Schlack A, Shah NJ et al (2001) Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys. Neuron 29:287-296. https:// doi. org/ 10. 1016/ s0896-6273(01) 00198-2
  23. Bremmer F, Schlack A, Kaminiarz A, Hoffmann K-P (2013) Encod- ing of movement in near extrapersonal space in primate area VIP. Front Behav Neurosci 7:8. https:// doi. org/ 10. 3389/ fnbeh. 2013. 00008
  24. Breveglieri R, Vaccari FE, Bosco A et al (2019) Neurons modulated by action execution and observation in the macaque medial parietal cortex. Curr Biol 29:1218-1225.e3. https:// doi. org/ 10. 1016/j. cub. 2019. 02. 027
  25. Bruni S, Giorgetti V, Bonini L, Fogassi L (2015) Processing and inte- gration of contextual information in monkey ventrolateral pre- frontal neurons during selection and execution of goal-directed manipulative actions. J Neurosci 35:11877-11890. https:// doi. org/ 10. 1523/ JNEUR OSCI. 1938-15. 2015
  26. Bruni S, Giorgetti V, Fogassi L, Bonini L (2017) Multimodal encoding of goal-directed actions in monkey ventral premotor grasping neurons. Cereb Cortex 27:522-533. https:// doi. org/ 10. 1093/ cercor/ bhv246
  27. Bruni S, Gerbella M, Bonini L et al (2018) Cortical and subcorti- cal connections of parietal and premotor nodes of the monkey hand mirror neuron network. Brain Struct Funct 223:1713- 1729. https:// doi. org/ 10. 1007/ s00429-017-1582-0
  28. Bufacchi RJ, Iannetti GD (2018) An action field theory of periper- sonal space. Trends Cogn Sci 22:1076-1090. https:// doi. org/ 10. 1016/j. tics. 2018. 09. 004
  29. Burman KJ, Bakola S, Richardson KE et al (2015) Cortical and thalamic projections to cytoarchitectural areas 6Va and 8C of the marmoset monkey: connectionally distinct subdivisions of the lateral premotor cortex. J Comp Neurol 523:1222-1247. https:// doi. org/ 10. 1002/ cne. 23734
  30. Caligiore D, Pezzulo G, Miall RC, Baldassarre G (2013) The contri- bution of brain sub-cortical loops in the expression and acqui- sition of action understanding abilities. Neurosci Biobehav Rev 37:2504-2515. https:// doi. org/ 10. 1016/j. neubi orev. 2013. 07. 016
  31. Caminiti R, Borra E, Visco-Comandini F, et al (2017) Com- putational Architecture of the Parieto-Frontal Network Underlying Cognitive-Motor Control in Monkeys. eNeuro 4:ENEURO.0306-16.2017. https:// doi. org/ 10. 1523/ ENEURO. 0306-16. 2017
  32. Caruana F, Avanzini P, Mai R et al (2017) Decomposing tool-action observation: a stereo-EEG study. Cereb Cortex 27:4229-4243. https:// doi. org/ 10. 1093/ cercor/ bhx124
  33. Chen A, DeAngelis GC, Angelaki DE (2011a) Representation of ves- tibular and visual cues to self-motion in ventral intraparietal cor- tex. J Neurosci 31:12036-12052. https:// doi. org/ 10. 1523/ JNEUR OSCI. 0395-11. 2011
  34. Chen A, DeAngelis GC, Angelaki DE (2011b) Convergence of ves- tibular and visual self-motion signals in an area of the posterior sylvian fissure. J Neurosci 31:11617-11627. https:// doi. org/ 10. 1523/ JNEUR OSCI. 1266-11. 2011
  35. Chen X, Deangelis GC, Angelaki DE (2013) Diverse spatial reference frames of vestibular signals in parietal cortex. Neuron 80:1310- 1321. https:// doi. org/ 10. 1016/j. neuron. 2013. 09. 006
  36. Chen A, Gu Y, Liu S et al (2016) Evidence for a causal contribution of macaque vestibular, but not intraparietal, cortex to heading perception. J Neurosci 36:3789-3798. https:// doi. org/ 10. 1523/ JNEUR OSCI. 2485-15. 2016
  37. Chen A, Zeng F, DeAngelis GC, Angelaki DE (2021) Dynamics of heading and choice-related signals in the parieto-insular ves- tibular cortex of macaque monkeys. J Neurosci 41:3254-3265. https:// doi. org/ 10. 1523/ JNEUR OSCI. 2275-20. 2021
  38. Cisek P (2007) Cortical mechanisms of action selection: the affordance competition hypothesis. Philos Trans R Soc Lond B Biol Sci 362:1585-1599. https:// doi. org/ 10. 1098/ rstb. 2007. 2054
  39. Cisek P, Kalaska JF (2010) Neural mechanisms for interacting with a world full of action choices. Annu Rev Neurosci 33:269-298. https:// doi. org/ 10. 1146/ annur ev. neuro. 051508. 135409
  40. Cléry J, Guipponi O, Odouard S et al (2017) The prediction of impact of a looming stimulus onto the body is subserved by multi- sensory integration mechanisms. J Neurosci 37:10656-10670. https:// doi. org/ 10. 1523/ JNEUR OSCI. 0610-17. 2017
  41. Colby CL, Duhamel JR, Goldberg ME (1993) Ventral intraparietal area of the macaque: anatomic location and visual response proper- ties. J Neurophysiol 69:902-914. https:// doi. org/ 10. 1152/ jn. 1993. 69.3. 902
  42. Cooke DF, Graziano MSA (2003) Defensive movements evoked by air puff in monkeys. J Neurophysiol 90:3317-3329. https:// doi. org/ 10. 1152/ jn. 00513. 2003
  43. Cooke DF, Graziano MSA (2004) Super-flinchers and nerves of steel: defensive movements altered by chemical manipulation of a cortical motor area. Neuron 43:585-593. https:// doi. org/ 10. 1016/j. neuron. 2004. 07. 029
  44. Cooke DF, Taylor CSR, Moore T, Graziano MSA (2003) Complex movements evoked by microstimulation of the ventral intrapari- etal area. Proc Natl Acad Sci U S A 100:6163-6168. https:// doi. org/ 10. 1073/ pnas. 10317 51100
  45. Corbo D, Orban GA (2017) Observing others speak or sing activates spt and neighboring parietal cortex. J Cogn Neurosci 29:1002- 1021. https:// doi. org/ 10. 1162/ jocn_a_ 01103
  46. Cottereau BR, Smith AT, Rima S et al (2017) Processing of egomotion- consistent optic flow in the rhesus macaque cortex. Cereb Cortex 27:330-343. https:// doi. org/ 10. 1093/ cercor/ bhw412
  47. Cowie D, Smith L, Braddick O (2010) The development of locomotor planning for end-state comfort. Perception 39:661-670. https:// doi. org/ 10. 1068/ p6343
  48. Czuba TB, Huk AC, Cormack LK, Kohn A (2014) Area MT encodes three-dimensional motion. J Neurosci 34:15522-15533. https:// doi. org/ 10. 1523/ JNEUR OSCI. 1081-14. 2014
  49. Dalla Volta R, Fasano F, Cerasa A et al (2015) Walking indoors, walk- ing outdoors: an fMRI study. Front Psychol 6:1502. https:// doi. org/ 10. 3389/ fpsyg. 2015. 01502
  50. De Vitis M, Breveglieri R, Hadjidimitrakis K et al (2019) The neglected medial part of macaque area PE: segregated process- ing of reach depth and direction. Brain Struct Funct 224:2537- 2557. https:// doi. org/ 10. 1007/ s00429-019-01923-8
  51. Di Marco S, Tosoni A, Altomare EC et al (2019) Walking-related locomotion is facilitated by the perception of distant targets in the extrapersonal space. Sci Rep 9:9884. https:// doi. org/ 10. 1038/ s41598-019-46384-5
  52. Diomedi S, Vaccari FE, Filippini M, et al (2020) Mixed selectivity in macaque medial parietal cortex during eye-hand reaching. iScience 23:101616. https:// doi. org/ 10. 1016/j. isci. 2020. 101616
  53. Drew T, Marigold DS (2015) Taking the next step: cortical con- tributions to the control of locomotion. Curr Opin Neurobiol 33:25-33. https:// doi. org/ 10. 1016/j. conb. 2015. 01. 011
  54. Dubois J, de Berker AO, Tsao DY (2015) Single-unit recordings in the macaque face patch system reveal limitations of fMRI MVPA. J Neurosci 35:2791-2802. https:// doi. org/ 10. 1523/ JNEUR OSCI. 4037-14. 2015
  55. Duhamel JR, Bremmer F, Ben Hamed S, Graf W (1997) Spatial invariance of visual receptive fields in parietal cortex neurons. Nature 389:845-848. https:// doi. org/ 10. 1038/ 39865
  56. Duhamel JR, Colby CL, Goldberg ME (1998) Ventral intraparietal area of the macaque: congruent visual and somatic response properties. J Neurophysiol 79:126-136. https:// doi. org/ 10. 1152/ jn. 1998. 79.1. 126
  57. Dureux A, Blini E, Grandi LC et al (2021) Close facial emotions enhance physiological responses and facilitate perceptual discrimination. Cortex 138:40-58. https:// doi. org/ 10. 1016/j. cortex. 2021. 01. 014
  58. Ebbesen CL, Froemke RC (2021) Body language signals for rodent social communication. Curr Opin Neurobiol 68:91-106. https:// doi. org/ 10. 1016/j. conb. 2021. 01. 008
  59. Errante A, Fogassi L (2020) Activation of cerebellum and basal ganglia during the observation and execution of manipu- lative actions. Sci Rep 10:12008. https:// doi. org/ 10. 1038/ s41598-020-68928-w
  60. Fajen BR, Warren WH (2003) Behavioral dynamics of steering, obstacle avoidance, and route selection. J Exp Psychol Hum Percept Perform 29:343-362. https:// doi. org/ 10. 1037/ 0096- 1523. 29.2. 343
  61. Falótico T, Proffitt T, Ottoni EB et al (2019) Three thousand years of wild capuchin stone tool use. Nat Ecol Evol 3:1034-1038. https:// doi. org/ 10. 1038/ s41559-019-0904-4
  62. Fan RH, Liu S, DeAngelis GC, Angelaki DE (2015) Heading tuning in macaque area V6. J Neurosci 35:16303-16314. https:// doi. org/ 10. 1523/ JNEUR OSCI. 2903-15. 2015
  63. Faugier-Grimaud S, Ventre J (1989) Anatomic connections of infe- rior parietal cortex (area 7) with subcortical structures related to vestibulo-ocular function in a monkey (Macaca fascicularis). J Comp Neurol 280:1-14. https:// doi. org/ 10. 1002/ cne. 90280 0102
  64. Ferri F, Tajadura-Jiménez A, Väljamäe A et al (2015a) Emotion-induc- ing approaching sounds shape the boundaries of multisensory peripersonal space. Neuropsychologia 70:468-475. https:// doi. org/ 10. 1016/j. neuro psych ologia. 2015. 03. 001
  65. Ferri S, Rizzolatti G, Orban GA (2015b) The organization of the pos- terior parietal cortex devoted to upper limb actions: an fMRI study. Hum Brain Mapp 36:3845-3866. https:// doi. org/ 10. 1002/ hbm. 22882
  66. Ferroni CG, Albertini D, Lanzilotto M et al (2021) Local and system mechanisms for action execution and observation in parietal and premotor cortices. Curr Biol. https:// doi. org/ 10. 1016/j. cub. 2021. 04. 034
  67. Fini C, Brass M, Committeri G (2015) Social scaling of extrapersonal space: target objects are judged as closer when the reference frame is a human agent with available movement potentialities. Cognition 134:50-56. https:// doi. org/ 10. 1016/j. cogni tion. 2014. 08. 014
  68. Fogassi L, Gallese V, Fadiga L et al (1996) Coding of peripersonal space in inferior premotor cortex (area F4). J Neurophysiol 76:141-157. https:// doi. org/ 10. 1152/ jn. 1996. 76.1. 141
  69. Fogassi L, Gallese V, Buccino G et al (2001) Cortical mechanism for the visual guidance of hand grasping movements in the monkey: a reversible inactivation study. Brain 124:571-586. https:// doi. org/ 10. 1093/ brain/ 124.3. 571
  70. Fossataro C, Sambo CF, Garbarini F, Iannetti GD (2016) Interper- sonal interactions and empathy modulate perception of threat and defensive responses. Sci Rep 6:19353. https:// doi. org/ 10. 1038/ srep1 9353
  71. Franchak JM, Adolph KE (2010) Visually guided navigation: head- mounted eye-tracking of natural locomotion in children and adults. Vision Res 50:2766-2774. https:// doi. org/ 10. 1016/j. vis- res. 2010. 09. 024
  72. Frost R, Skidmore J, Santello M, Artemiadis P (2015) Sensorimotor control of gait: a novel approach for the study of the interplay of visual and proprioceptive feedback. Front Hum Neurosci 9:14. https:// doi. org/ 10. 3389/ fnhum. 2015. 00014
  73. Gallese V, Murata A, Kaseda M et al (1994) Deficit of hand preshap- ing after muscimol injection in monkey parietal cortex. Neu- roReport 5:1525-1529. https:// doi. org/ 10. 1097/ 00001 756-19940 7000-00029
  74. Galletti C, Fattori P, Kutz DF, Gamberini M (1999) Brain location and visual topography of cortical area V6A in the macaque monkey. Eur J Neurosci 11:575-582. https:// doi. org/ 10. 1046/j. 1460-9568. 1999. 00467.x
  75. Gamberini M, Passarelli L, Fattori P et al (2009) Cortical connections of the visuomotor parietooccipital area V6Ad of the macaque monkey. J Comp Neurol 513:622-642. https:// doi. org/ 10. 1002/ cne. 21980
  76. Gamberini M, Dal Bò G, Breveglieri R et al (2018) Sensory properties of the caudal aspect of the macaque's superior parietal lobule. Brain Struct Funct 223:1863-1879. https:// doi. org/ 10. 1007/ s00429-017-1593-x
  77. Gamberini M, Passarelli L, Fattori P, Galletti C (2020) Structural con- nectivity and functional properties of the macaque superior pari- etal lobule. Brain Struct Funct 225:1349-1367. https:// doi. org/ 10. 1007/ s00429-019-01976-9
  78. Gardner EP, Babu KS, Reitzen SD et al (2007) Neurophysiology of prehension. I. Posterior parietal cortex and object-oriented hand behaviors. J Neurophysiol 97:387-406. https:// doi. org/ 10. 1152/ jn. 00558. 2006
  79. Gentilucci M, Scandolara C, Pigarev IN, Rizzolatti G (1983) Visual responses in the postarcuate cortex (area 6) of the monkey that are independent of eye position. Exp Brain Res 50:464-468. https:// doi. org/ 10. 1007/ BF002 39214
  80. Gentilucci M, Fogassi L, Luppino G et al (1988) Functional organiza- tion of inferior area 6 in the macaque monkey. I. Somatotopy and the control of proximal movements. Exp Brain Res 71:475-490. https:// doi. org/ 10. 1007/ BF002 48741
  81. Gerbella M, Borra E, Mangiaracina C et al (2016) Corticostriate pro- jections from areas of the "lateral grasping network": evidence for multiple hand-related input channels. Cereb Cortex 26:3096- 3115. https:// doi. org/ 10. 1093/ cercor/ bhv135
  82. Gharbawie OA, Stepniewska I, Kaas JH (2011) Cortical connections of functional zones in posterior parietal cortex and frontal cortex motor regions in new world monkeys. Cereb Cortex 21:1981- 2002. https:// doi. org/ 10. 1093/ cercor/ bhq260
  83. Goodale MA, Milner AD (1992) Separate visual pathways for percep- tion and action. Trends Neurosci 15:20-25. https:// doi. org/ 10. 1016/ 0166-2236(92) 90344-8
  84. Graziano MS, Gross CG (1993) A bimodal map of space: somatosen- sory receptive fields in the macaque putamen with corresponding visual receptive fields. Exp Brain Res 97:96-109. https:// doi. org/ 10. 1007/ BF002 28820
  85. Graziano MS, Yap GS, Gross CG (1994) Coding of visual space by premotor neurons. Science 266:1054-1057. https:// doi. org/ 10. 1126/ scien ce. 79736 61
  86. Graziano MS, Reiss LA, Gross CG (1999) A neuronal representation of the location of nearby sounds. Nature 397:428-430. https:// doi. org/ 10. 1038/ 17115
  87. Graziano MSA, Taylor CSR, Moore T (2002) Complex movements evoked by microstimulation of precentral cortex. Neuron 34:841-851. https:// doi. org/ 10. 1016/ s0896-6273(02) 00698-0
  88. Grefkes C, Fink GR (2005) The functional organization of the intra- parietal sulcus in humans and monkeys. J Anat 207:3-17. https:// doi. org/ 10. 1111/j. 1469-7580. 2005. 00426.x
  89. Gu Y, Watkins PV, Angelaki DE, DeAngelis GC (2006) Visual and nonvisual contributions to three-dimensional heading selectiv- ity in the medial superior temporal area. J Neurosci 26:73-85. https:// doi. org/ 10. 1523/ JNEUR OSCI. 2356-05. 2006
  90. Gu Y, DeAngelis GC, Angelaki DE (2007) A functional link between area MSTd and heading perception based on vestibular signals. Nat Neurosci 10:1038-1047. https:// doi. org/ 10. 1038/ nn1935
  91. Gu Y, Cheng Z, Yang L et al (2016) Multisensory convergence of visual and vestibular heading cues in the pursuit area of the frontal eye field. Cereb Cortex 26:3785-3801. https:// doi. org/ 10. 1093/ cercor/ bhv183
  92. Guipponi O, Wardak C, Ibarrola D et al (2013) Multimodal conver- gence within the intraparietal sulcus of the macaque monkey. J Neurosci 33:4128-4139. https:// doi. org/ 10. 1523/ JNEUR OSCI. 1421-12. 2013
  93. Hadjidimitrakis K, Bakola S, Wong YT, Hagan MA (2019) Mixed spatial and movement representations in the primate posterior parietal cortex. Front Neural Circuits 13:15. https:// doi. org/ 10. 3389/ fncir. 2019. 00015
  94. Hadjidimitrakis K, Ghodrati M, Breveglieri R et al (2020) Neural coding of action in three dimensions: task-and time-invariant reference frames for visuospatial and motor-related activity in parietal area V6A. J Comp Neurol 528:3108-3122. https:// doi. org/ 10. 1002/ cne. 24889
  95. Hadjidimitrakis K, Dal Bo' G, Breveglieri R, et al (2015) Over- lapping representations for reach depth and direction in caudal superior parietal lobule of macaques. J Neurophysiol 114:2340-2352. https:// doi. org/ 10. 1152/ jn. 00486. 2015
  96. Harmand S, Lewis JE, Feibel CS et al (2015) 3.3-million-year-old stone tools from Lomekwi 3, West Turkana. Kenya Nature 521:310-315. https:// doi. org/ 10. 1038/ natur e14464
  97. Haslam M, Hernandez-Aguilar RA, Proffitt T et al (2017) Primate archaeology. Evolves Nat Ecol Evol 1:1431-1437. https:// doi. org/ 10. 1038/ s41559-017-0286-4
  98. Heed T, Habets B, Sebanz N, Knoblich G (2010) Others' actions reduce crossmodal integration in peripersonal space. Curr Biol 20:1345-1349. https:// doi. org/ 10. 1016/j. cub. 2010. 05. 068
  99. Huang R-S, Chen C-F, Sereno MI (2015) Neural substrates underly- ing the passive observation and active control of translational egomotion. J Neurosci 35:4258-4267. https:// doi. org/ 10. 1523/ JNEUR OSCI. 2647-14. 2015
  100. Huk AC, Katz LN, Yates JL (2017) The role of the lateral intra- parietal area in (the study of) decision making. Annu Rev Neurosci 40:349-372. https:// doi. org/ 10. 1146/ annur ev-neuro-072116-031508
  101. Inuggi A, Campus C, Vastano R et al (2018) Observation of point- light-walker locomotion induces motor resonance when explic- itly represented; an EEG source analysis study. Front Psychol 9:303. https:// doi. org/ 10. 3389/ fpsyg. 2018. 00303
  102. Ishida H, Nakajima K, Inase M, Murata A (2010) Shared mapping of own and others' bodies in visuotactile bimodal area of monkey parietal cortex. J Cogn Neurosci 22:83-96. https:// doi. org/ 10. 1162/ jocn. 2009. 21185
  103. Jastorff J, Begliomini C, Fabbri-Destro M et al (2010) Coding observed motor acts: different organizational principles in the parietal and premotor cortex of humans. J Neurophysiol 104:128-140. https:// doi. org/ 10. 1152/ jn. 00254. 2010
  104. Jeannerod M, Arbib MA, Rizzolatti G, Sakata H (1995) Grasping objects: the cortical mechanisms of visuomotor transformation. Trends Neurosci 18:314-320
  105. Jerjian SJ, Sahani M, Kraskov A (2020) Movement initiation and grasp representation in premotor and primary motor cortex mirror neu- rons. Elife 9:e54139. https:// doi. org/ 10. 7554/ eLife. 54139
  106. Kaas JH, Stepniewska I (2016) Evolution of posterior parietal cortex and parietal-frontal networks for specific actions in primates. J Comp Neurol 524:595-608. https:// doi. org/ 10. 1002/ cne. 23838
  107. Kiehn O (2016) Decoding the organization of spinal circuits that con- trol locomotion. Nat Rev Neurosci 17:224-238. https:// doi. org/ 10. 1038/ nrn. 2016.9
  108. Kim HR, Angelaki DE, DeAngelis GC (2015) A functional link between MT neurons and depth perception based on motion par- allax. J Neurosci 35:2766-2777. https:// doi. org/ 10. 1523/ JNEUR OSCI. 3134-14. 2015
  109. Kim A, Kretch KS, Zhou Z, Finley JM (2018) The quality of visual information about the lower extremities influences visuomotor coordination during virtual obstacle negotiation. J Neurophysiol 120:839-847. https:// doi. org/ 10. 1152/ jn. 00931. 2017
  110. King SM, Cowey A (1992) Defensive responses to looming visual stimuli in monkeys with unilateral striate cortex ablation. Neu- ropsychologia 30:1017-1024. https:// doi. org/ 10. 1016/ 0028- 3932(92) 90053-o
  111. Kingsbury L, Hong W (2020) A multi-brain framework for social inter- action. Trends Neurosci 43:651-666. https:// doi. org/ 10. 1016/j. tins. 2020. 06. 008
  112. Koenderink JJ (1986) Optic flow. Vision Res 26:161-179. https:// doi. org/ 10. 1016/ 0042-6989(86) 90078-7
  113. Lanzilotto M, Ferroni CG, Livi A et al (2019) Anterior intraparietal area: a hub in the observed manipulative action network. Cereb Cortex 29:1816-1833. https:// doi. org/ 10. 1093/ cercor/ bhz011
  114. Lanzilotto M, Maranesi M, Livi A et al (2020) Stable readout of observed actions from format-dependent activity of mon- key's anterior intraparietal neurons. Proc Natl Acad Sci USA 117:16596-16605. https:// doi. org/ 10. 1073/ pnas. 20070 18117
  115. Lehmann SJ, Scherberger H (2013) Reach and gaze representations in macaque parietal and premotor grasp areas. J Neurosci 33:7038- 7049. https:// doi. org/ 10. 1523/ JNEUR OSCI. 5568-12. 2013
  116. Lewis JW, Van Essen DC (2000a) Mapping of architectonic subdivi- sions in the macaque monkey, with emphasis on parieto-occipital cortex. J Comp Neurol 428:79-111. https:// doi. org/ 10. 1002/ 1096-9861(20001 204) 428:1% 3c79:: aid-cne7% 3e3.0. co;2-q
  117. Lewis JW, Van Essen DC (2000b) Corticocortical connections of vis- ual, sensorimotor, and multimodal processing areas in the pari- etal lobe of the macaque monkey. J Comp Neurol 428:112-137. https:// doi. org/ 10. 1002/ 1096-9861(20001 204) 428:1% 3c112:: aid-cne8% 3e3.0. co;2-9
  118. Livi A, Lanzilotto M, Maranesi M et al (2019) Agent-based represen- tations of objects and actions in the monkey pre-supplementary motor area. Proc Natl Acad Sci USA 116:2691-2700. https:// doi. org/ 10. 1073/ pnas. 18108 90116
  119. Luncz LV, Tan A, Haslam M, et al (2017) Resource depletion through primate stone technology. Elife 6:. https:// doi. org/ 10. 7554/ eLife. 23647
  120. Luppino G, Murata A, Govoni P, Matelli M (1999) Largely segregated parietofrontal connections linking rostral intraparietal cortex (areas AIP and VIP) and the ventral premotor cortex (areas F5 and F4). Exp Brain Res 128:181-187. https:// doi. org/ 10. 1007/ s0022 10050 833
  121. Lyon DC, Nassi JJ, Callaway EM (2010) A disynaptic relay from superior colliculus to dorsal stream visual cortex in macaque monkey. Neuron 65:270-279. https:// doi. org/ 10. 1016/j. neuron. 2010. 01. 003
  122. Macellini S, Maranesi M, Bonini L et al (2012) Individual and social learning processes involved in the acquisition and generaliza- tion of tool use in macaques. Philos Trans R Soc Lond B Biol Sci 367:24-36. https:// doi. org/ 10. 1098/ rstb. 2011. 0125
  123. Maeda K, Ishida H, Nakajima K et al (2015) Functional properties of parietal hand manipulation-related neurons and mirror neurons responding to vision of own hand action. J Cogn Neurosci 27:560-572. https:// doi. org/ 10. 1162/ jocn_a_ 00742
  124. Maier JX, Neuhoff JG, Logothetis NK, Ghazanfar AA (2004) Mul- tisensory integration of looming signals by rhesus monkeys. Neuron 43:177-181. https:// doi. org/ 10. 1016/j. neuron. 2004. 06. 027
  125. Makris S, Urgesi C (2015) Neural underpinnings of superior action prediction abilities in soccer players. Soc Cogn Affect Neurosci 10:342-351. https:// doi. org/ 10. 1093/ scan/ nsu052
  126. Manrique HM, Call J, Visalberghi E, Sabbatini G (2021) Great apes (Pan troglodytes, Pan paniscus, Pongo abelii) exploit better the information of failure than capuchin monkeys (Sapajus spp.) when selecting tools to solve the same foraging problem. J Comp Psychol. https:// doi. org/ 10. 1037/ com00 00242
  127. Mantini D, Corbetta M, Romani GL et al (2013) Evolutionarily novel functional networks in the human brain? J Neurosci 33:3259- 3275. https:// doi. org/ 10. 1523/ JNEUR OSCI. 4392-12. 2013
  128. Mao D, Avila E, Caziot B, et al (2020) Spatial representations in macaque hippocampal formation. bioRxiv 2020.10.03.324848. https:// doi. org/ 10. 1101/ 2020. 10. 03. 324848
  129. Maranesi M, Rodà F, Bonini L et al (2012) Anatomo-functional organi- zation of the ventral primary motor and premotor cortex in the macaque monkey. Eur J Neurosci 36:3376-3387. https:// doi. org/ 10. 1111/j. 1460-9568. 2012. 08252.x
  130. Maranesi M, Bonini L, Fogassi L (2014) Cortical processing of object affordances for self and others' action. Front Psychol 5:538. https:// doi. org/ 10. 3389/ fpsyg. 2014. 00538
  131. Maranesi M, Livi A, Bonini L (2015) Processing of own hand visual feedback during object grasping in ventral premotor mirror neurons. J Neurosci 35:11824-11829. https:// doi. org/ 10. 1523/ JNEUR OSCI. 0301-15. 2015
  132. Maranesi M, Bruni S, Livi A et al (2019) Differential neural dynam- ics underling pragmatic and semantic affordance processing in macaque ventral premotor cortex. Sci Rep 9:11700. https:// doi. org/ 10. 1038/ s41598-019-48216-y
  133. Maravita A, Iriki A (2004) Tools for the body (schema). Trends Cogn Sci 8:79-86. https:// doi. org/ 10. 1016/j. tics. 2003. 12. 008
  134. Maunsell JH, van Essen DC (1983) The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. J Neurosci 3:2563-2586
  135. Milner AD, Goodale MA (1993) Visual pathways to perception and action. Prog Brain Res 95:317-337. https:// doi. org/ 10. 1016/ s0079-6123(08) 60379-9
  136. Mimica B, Dunn BA, Tombaz T et al (2018) Efficient cortical coding of 3D posture in freely behaving rats. Science 362:584-589. https:// doi. org/ 10. 1126/ scien ce. aau20 13
  137. Minassian K, Hofstoetter US, Dzeladini F et al (2017) The human cen- tral pattern generator for locomotion: Does it exist and contribute to walking? Neuroscientist 23:649-663. https:// doi. org/ 10. 1177/ 10738 58417 699790
  138. Mishkin M, Ungerleider LG (1982) Contribution of striate inputs to the visuospatial functions of parieto-preoccipital cortex in mon- keys. Behav Brain Res 6:57-77. https:// doi. org/ 10. 1016/ 0166- 4328(82) 90081-X
  139. Mountcastle VB, Lynch JC, Georgopoulos A et al (1975) Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. J Fluid Mech 38:871- 908. https:// doi. org/ 10. 1152/ jn. 1975. 38.4. 871
  140. Murata A, Gallese V, Luppino G et al (2000) Selectivity for the shape, size, and orientation of objects for grasping in neurons of mon- key parietal area AIP. J Neurophysiol 83:2580-2601. https:// doi. org/ 10. 1152/ jn. 2000. 83.5. 2580
  141. Mysore SG, Vogels R, Raiguel SE et al (2010) The selectivity of neu- rons in the macaque fundus of the superior temporal area for three-dimensional structure from motion. J Neurosci 30:15491- 15508. https:// doi. org/ 10. 1523/ JNEUR OSCI. 0820-10. 2010
  142. Nadler JW, Nawrot M, Angelaki DE, DeAngelis GC (2009) MT neu- rons combine visual motion with a smooth eye movement signal to code depth-sign from motion parallax. Neuron 63:523-532. https:// doi. org/ 10. 1016/j. neuron. 2009. 07. 029
  143. Nakamura H, Kuroda T, Wakita M et al (2001) From three-dimensional space vision to prehensile hand movements: the lateral intrapa- rietal area links the area V3A and the anterior intraparietal area in macaques. J Neurosci 21:8174-8187
  144. Nelissen K, Borra E, Gerbella M et al (2011) Action observation cir- cuits in the macaque monkey cortex. J Neurosci 31:3743-3756. https:// doi. org/ 10. 1523/ JNEUR OSCI. 4803-10. 2011
  145. Orban GA, Caruana F (2014) The neural basis of human tool use. Front Psychol 5:310. https:// doi. org/ 10. 3389/ fpsyg. 2014. 00310
  146. Orban GA, Sunaert S, Todd JT et al (1999) Human cortical regions involved in extracting depth from motion. Neuron 24:929-940. https:// doi. org/ 10. 1016/ s0896-6273(00) 81040-5
  147. Orban GA, Lanzilotto M, Bonini L (2021) From observed action iden- tity to social affordances. Trends Cogn Sci. https:// doi. org/ 10. 1016/j. tics. 2021. 02. 012
  148. Padberg J, Disbrow E, Krubitzer L (2005) The organization and con- nections of anterior and posterior parietal cortex in titi monkeys: do New World monkeys have an area 2? Cereb Cortex 15:1938- 1963. https:// doi. org/ 10. 1093/ cercor/ bhi071
  149. Palmisano S, Gillam B, Govan DG et al (2010) Stereoscopic percep- tion of real depths at large distances. J vis 10:19. https:// doi. org/ 10. 1167/ 10.6. 19
  150. Pani P, Theys T, Romero MC, Janssen P (2014) Grasping execution and grasping observation activity of single neurons in the macaque anterior intraparietal area. J Cogn Neurosci 26:2342-2355. https:// doi. org/ 10. 1162/ jocn_a_ 00647
  151. Papadourakis V, Raos V (2019) Neurons in the macaque dorsal premo- tor cortex respond to execution and observation of actions. Cereb Cortex 29:4223-4237. https:// doi. org/ 10. 1093/ cercor/ bhy304
  152. Peeters R, Simone L, Nelissen K et al (2009) The representation of tool use in humans and monkeys: common and uniquely human features. J Neurosci 29:11523-11539. https:// doi. org/ 10. 1523/ JNEUR OSCI. 2040-09. 2009
  153. Perrett DI, Harries MH, Bevan R et al (1989) Frameworks of analysis for the neural representation of animate objects and actions. J Exp Biol 146:87-113
  154. Pezzulo G, Cisek P (2016) Navigating the affordance landscape: feedback control as a process model of behavior and cognition. Trends Cogn Sci 20:414-424. https:// doi. org/ 10. 1016/j. tics. 2016. 03. 013
  155. Philbeck JW, Loomis JM, Beall AC (1997) Visually perceived loca- tion is an invariant in the control of action. Percept Psychophys 59:601-612. https:// doi. org/ 10. 3758/ bf032 11868
  156. Pichon S, de Gelder B, Grèzes J (2012) Threat prompts defensive brain responses independently of attentional control. Cereb Cortex 22:274-285. https:// doi. org/ 10. 1093/ cercor/ bhr060
  157. Pitzalis S, Sereno MI, Committeri G et al (2013) The human homo- logue of macaque area V6A. Neuroimage 82:517-530. https:// doi. org/ 10. 1016/j. neuro image. 2013. 06. 026
  158. Pitzalis S, Serra C, Sulpizio V et al (2019) A putative human homo- logue of the macaque area PEc. Neuroimage 202:116092. https:// doi. org/ 10. 1016/j. neuro image. 2019. 116092
  159. Premereur E, Van Dromme IC, Romero MC et al (2015) Effective con- nectivity of depth-structure-selective patches in the lateral bank of the macaque intraparietal sulcus. PLoS Biol 13:e1002072. https:// doi. org/ 10. 1371/ journ al. pbio. 10020 72
  160. Proffitt DR, Stefanucci J, Banton T, Epstein W (2003) The role of effort in perceiving distance. Psychol Sci 14:106-112. https:// doi. org/ 10. 1111/ 1467-9280. t01-1-01427
  161. Raffi M, Squatrito S, Maioli MG (2002) Neuronal responses to optic flow in the monkey parietal area PEc. Cereb Cortex 12:639-646. https:// doi. org/ 10. 1093/ cercor/ 12.6. 639
  162. Raffi M, Maioli MG, Squatrito S (2011) Optic flow direction coding in area PEc of the behaving monkey. Neuroscience 194:136-149. https:// doi. org/ 10. 1016/j. neuro scien ce. 2011. 07. 036
  163. Ramsey R, Kaplan DM, Cross ES (2021) Watch and learn: the cogni- tive neuroscience of learning from others' actions. Trends Neu- rosci. https:// doi. org/ 10. 1016/j. tins. 2021. 01. 007
  164. Rathelot J-A, Dum RP, Strick PL (2017) Posterior parietal cortex contains a command apparatus for hand movements. Proc Natl Acad Sci USA 114:4255-4260. https:// doi. org/ 10. 1073/ pnas. 16081 32114
  165. Reed CL, Shoham S, Halgren E (2004) Neural substrates of tactile object recognition: an fMRI study. Hum Brain Mapp 21:236- 246. https:// doi. org/ 10. 1002/ hbm. 10162
  166. Rizzolatti G, Matelli M (2003) Two different streams form the dorsal visual system: anatomy and functions. Exp Brain Res 153:146- 157. https:// doi. org/ 10. 1007/ s00221-003-1588-0
  167. Rizzolatti G, Cattaneo L, Fabbri-Destro M, Rozzi S (2014) Cortical mechanisms underlying the organization of goal-directed actions and mirror neuron-based action understanding. Physiol Rev 94:655-706. https:// doi. org/ 10. 1152/ physr ev. 00009. 2013
  168. Rodman HR, Gross CG, Albright TD (1990) Afferent basis of visual response properties in area MT of the macaque. II. Effects of superior colliculus removal. J Neurosci 10:1154-1164
  169. Rosa MG, Tweedale R (2001) The dorsomedial visual areas in new world and old world monkeys: homology and function. Eur J Neurosci 13:421-427. https:// doi. org/ 10. 1046/j. 0953-816x. 2000. 01414.x Rosenbaum DA (2009) Walking down memory lane: where walkers look as they descend stairs provides hints about how they control their walking behavior. Am J Psychol 122:425-430
  170. Rozzi S, Calzavara R, Belmalih A et al (2006) Cortical connections of the inferior parietal cortical convexity of the macaque monkey. Cereb Cortex 16:1389-1417. https:// doi. org/ 10. 1093/ cercor/ bhj076
  171. Rozzi S, Ferrari PF, Bonini L et al (2008) Functional organization of inferior parietal lobule convexity in the macaque monkey: elec- trophysiological characterization of motor, sensory and mirror responses and their correlation with cytoarchitectonic areas. Eur J Neurosci 28:1569-1588. https:// doi. org/ 10. 1111/j. 1460-9568. 2008. 06395.x
  172. Saito H, Yukie M, Tanaka K et al (1986) Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey. J Neurosci 6:145-157
  173. Sakata H, Taira M, Murata A, Mine S (1995) Neural mechanisms of visual guidance of hand action in the parietal cortex of the mon- key. Cereb Cortex 5:429-438. https:// doi. org/ 10. 1093/ cercor/ 5.5. 429
  174. Sarel A, Finkelstein A, Las L, Ulanovsky N (2017) Vectorial repre- sentation of spatial goals in the hippocampus of bats. Science 355:176-180. https:// doi. org/ 10. 1126/ scien ce. aak95 89
  175. Sato N, Sakata H, Tanaka YL, Taira M (2006) Navigation-associated medial parietal neurons in monkeys. Proc Natl Acad Sci USA 103:17001-17006. https:// doi. org/ 10. 1073/ pnas. 06042 77103
  176. Sawamura H, Orban GA, Vogels R (2006) Selectivity of neuronal adap- tation does not match response selectivity: a single-cell study of the FMRI adaptation paradigm. Neuron 49:307-318. https:// doi. org/ 10. 1016/j. neuron. 2005. 11. 028
  177. Schaafsma SJ, Duysens J (1996) Neurons in the ventral intrapari- etal area of awake macaque monkey closely resemble neurons in the dorsal part of the medial superior temporal area in their responses to optic flow patterns. J Neurophysiol 76:4056-4068. https:// doi. org/ 10. 1152/ jn. 1996. 76.6. 4056
  178. Schaffelhofer S, Scherberger H (2016) Object vision to hand action in macaque parietal, premotor, and motor cortices. Elife 5:. https:// doi. org/ 10. 7554/ eLife. 15278
  179. Schiff W, Caviness JA, Gibson JJ (1962) Persistent fear responses in rhesus monkeys to the optical stimulus of "looming." Science 136:982-983. https:// doi. org/ 10. 1126/ scien ce. 136. 3520. 982
  180. Schlack A, Sterbing-D'Angelo SJ, Hartung K et al (2005) Multisensory space representations in the macaque ventral intraparietal area. J Neurosci 25:4616-4625. https:// doi. org/ 10. 1523/ JNEUR OSCI. 0455-05. 2005
  181. Seltzer B, Pandya DN (1986) Posterior parietal projections to the intra- parietal sulcus of the rhesus monkey. Exp Brain Res 62:459-469. https:// doi. org/ 10. 1007/ BF002 36024
  182. Serra C, Galletti C, Di Marco S et al (2019) Egomotion-related vis- ual areas respond to active leg movements. Hum Brain Mapp 40:3174-3191. https:// doi. org/ 10. 1002/ hbm. 24589
  183. Shepherd SV, Klein JT, Deaner RO, Platt ML (2009) Mirroring of attention by neurons in macaque parietal cortex. Proc Natl Acad Sci USA 106:9489-9494. https:// doi. org/ 10. 1073/ pnas. 09004 19106
  184. Siegel RM, Read HL (1997) Analysis of optic flow in the monkey pari- etal area 7a. Cereb Cortex 7:327-346. https:// doi. org/ 10. 1093/ cercor/ 7.4. 327
  185. Sinke CBA, Sorger B, Goebel R, de Gelder B (2010) Tease or threat? Judging social interactions from bodily expressions. Neuroim- age 49:1717-1727. https:// doi. org/ 10. 1016/j. neuro image. 2009. 09. 065
  186. Snyder LH, Batista AP, Andersen RA (2000) Intention-related activity in the posterior parietal cortex: a review. Vision Res 40:1433- 1441. https:// doi. org/ 10. 1016/ s0042-6989(00) 00052-3
  187. Stefanucci JK, Proffitt DR, Banton T, Epstein W (2005) Distances appear different on hills. Percept Psychophys 67:1052-1060. https:// doi. org/ 10. 3758/ bf031 93631
  188. Steinmetz MA, Motter BC, Duffy CJ, Mountcastle VB (1987) Func- tional properties of parietal visual neurons: radial organization of directionalities within the visual field. J Neurosci 7:177-191
  189. Stepniewska I, Fang P-C, Kaas JH (2005) Microstimulation reveals specialized subregions for different complex movements in pos- terior parietal cortex of prosimian galagos. Proc Natl Acad Sci U S A 102:4878-4883. https:// doi. org/ 10. 1073/ pnas. 05010 48102
  190. Tanaka K, Sugita Y, Moriya M, Saito H (1993) Analysis of object motion in the ventral part of the medial superior temporal area of the macaque visual cortex. J Neurophysiol 69:128-142. https:// doi. org/ 10. 1152/ jn. 1993. 69.1. 128
  191. Teneggi C, Canzoneri E, di Pellegrino G, Serino A (2013) Social mod- ulation of peripersonal space boundaries. Curr Biol 23:406-411. https:// doi. org/ 10. 1016/j. cub. 2013. 01. 043
  192. Thier P, Andersen RA (1998) Electrical microstimulation distinguishes distinct saccade-related areas in the posterior parietal cortex. J Neurophysiol 80:1713-1735. https:// doi. org/ 10. 1152/ jn. 1998. 80.4. 1713
  193. Thierry B, Singh M, Kaumanns W (2004) Macaque Societies: A Model for the Study of Social Organization. Cambridge University Press Tombaz T, Dunn BA, Hovde K et al (2020) Action representation in the mouse parieto-frontal network. Sci Rep 10:5559. https:// doi. org/ 10. 1038/ s41598-020-62089-6
  194. Tomeo E, Cesari P, Aglioti SM, Urgesi C (2013) Fooling the kickers but not the goalkeepers: behavioral and neurophysiological cor- relates of fake action detection in soccer. Cereb Cortex 23:2765- 2778. https:// doi. org/ 10. 1093/ cercor/ bhs279
  195. Tunik E, Frey SH, Grafton ST (2005) Virtual lesions of the anterior intraparietal area disrupt goal-dependent on-line adjustments of grasp. Nat Neurosci 8:505-511. https:// doi. org/ 10. 1038/ nn1430
  196. Ukezono M, Takano Y (2021) An experimental task to examine the mirror neuron system in mice: laboratory mice understand the movement intentions of other mice based on their own experi- ence. Behav Brain Res 398:112970. https:// doi. org/ 10. 1016/j. bbr. 2020. 112970
  197. Van Dromme IC, Premereur E, Verhoef B-E et al (2016) Posterior parietal cortex drives inferotemporal activations during three- dimensional object vision. PLoS Biol 14:e1002445. https:// doi. org/ 10. 1371/ journ al. pbio. 10024 45
  198. Vanduffel W, Fize D, Peuskens H et al (2002) Extracting 3D from motion: differences in human and monkey intraparietal cortex. Science 298:413-415. https:// doi. org/ 10. 1126/ scien ce. 10735 74
  199. Vangeneugden J, Pollick F, Vogels R (2009) Functional differentiation of macaque visual temporal cortical neurons using a parametric action space. Cereb Cortex 19:593-611. https:// doi. org/ 10. 1093/ cercor/ bhn109
  200. Whitlock JR (2017) Posterior parietal cortex. Curr Biol 27:R691-R695. https:// doi. org/ 10. 1016/j. cub. 2017. 06. 007
  201. Wolbers T, Hegarty M, Büchel C, Loomis JM (2008) Spatial updating: how the brain keeps track of changing object locations during observer motion. Nat Neurosci 11:1223-1230. https:// doi. org/ 10. 1038/ nn. 2189
  202. Xiao DK, Marcar VL, Raiguel SE, Orban GA (1997) Selectivity of macaque MT/V5 neurons for surface orientation in depth speci- fied by motion. Eur J Neurosci 9:956-964. https:// doi. org/ 10. 1111/j. 1460-9568. 1997. tb014 46.x
  203. Zhang CY, Aflalo T, Revechkis B et al (2017) Partially mixed selec- tivity in human posterior parietal association cortex. Neuron 95:697-708.e4. https:// doi. org/ 10. 1016/j. neuron. 2017. 06. 040