Abstract
Natural memories are associative, declarative and distributed, and memory retrieval is a constructive operation. In addition, cues of objects that are not contained in the memory are rejected directly. Symbolic computing memories resemble natural memories in their declarative character, and information can be stored and recovered explicitly; however, they are reproductive rather than constructive, and lack the associative and distributed properties. Sub-symbolic memories developed within the connectionist or artificial neural networks paradigm are associative and distributed, but lack the declarative property, the capability of rejecting objects that are not included in the memory, and memory retrieval is also reproductive. In this paper we present a memory model that sustains the five properties of natural memories. We use Relational-Indeterminate Computing to model associative memory registers that hold distributed representations of individual objects. This mode of computing has ...
References (17)
- J. R. Anderson, G. H. Bower, Human Associative Memory: A Brief Edition, Lawrence Erlbaum Associates, Publishers, Hillsdale, New Jersey, 1980.
- M. R. Quillian, Semantic memory, in: M. Minsky (Ed.), Semantic Infor- mation Processing, MIT Press, 1968, pp. 227-270.
- J. R. Anderson, D. Bothell, M. D. Byrne, S. Douglass, C. Lebiere, Y. Qin, An integrated theory of the mind, Psychological Review 111 (2004) 1036- 1060.
- D. E. Rumelhart, J. L. McClelland, the PDF Research Group, Parallel Distributed Processing, Explorations in the Microstructure of Cognition, Vol.1: Foundations, The MIT Press, Cambridge, Mass., 1986.
- J. J. Hopfield, Neural networks and physical systems with emergent col- lective computational abilities, Proceedings of the National Academy of Sciences of the USA 79 (8) (1982) 2554-2558.
- B. Kosko, Bidirectional associative memories, IEEE Transactions on Sys- tems, man, and Cybernetics 18 (1) (1988) 49-60.
- Q. Ma, H. Isahara, Semantic networks represented by adaptive associative memories, Neurocomputing 34 (2000) 207-225.
- A. Graves, G. Wayne, I. Danihelka, Neural turing machines, CoRR abs/1410.5401. arXiv:1410.5401. URL http://arxiv.org/abs/1410.5401
- A. Graves, G. Wayne, M. Reynolds, Hybrid computing using a neural net- work with dynamic external memory, Nature 538 (7626) (2016) 471-476. doi:10.1038/nature20101.
- J. A. Fodor, Z. W. Pylyshyn, Connectionism and cognitive architecture: A critical analysis, Cognition 28 (1-2) (1988) 3-71.
- L. A. Pineda, Entropy, computing and rationality (2020). arXiv:2009. 10224.
- L. A. Pineda, The mode of computing, CoRR abs/1903.10559. arXiv: 1903.10559. URL http://arxiv.org/abs/1903.10559
- L. A. Pineda, Racionalidad Computacional, Academia Mexicana de Com- putación, A. C., Ciudad de México, 2020, to be published.
- Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (11) (2015) 436-444. doi:10.1038/nature14539.
- G. E. Hinton, R. R. Salakhutdinov, Reducing the Dimensionality of Data with Neural Networks, Science 313 (5786) (2006) 504-507. doi:10.1126/ science.1125249.
- J. Masci, U. Meier, D. Cireşan, J. Schmidhuber, Stacked Convolu- tional Auto-Encoders for Hierarchical Feature Extraction, in: T. Honkela, W. Duch, M. Girolami, S. Kaski (Eds.), Artificial Neural Networks and Machine Learning -ICANN 2011, Vol. 6791 of Lecture Notes in Computer Science, Springer, 2011, pp. 52-59. doi:10.1007/978-3-642-21735-7_7.
- D. Marr, Vision: A Computational Investigation into the Human Repre- sentation and Processing of Visual Information, Henry Holt and Co., Inc., New York, NY, USA, 1982.