Academia.eduAcademia.edu

Outline

Duality in Multi-layered Quantum Hall Systems

1992

Abstract

The braid group dynamics captures the fractional quantum Hall effect (FQHE) as a manifestation of puncture phase. When the dynamics is generalized for particles on a multi-sheeted surface, we obtain new tools which determine the fractional charges, the quantum statistics, and the filling factors of the multi-layered FQHE. A many-quasihole wavefunction is proposed for the bilayered samples. We also predict a ν = 5/7 FQHE for triple-layered samples. The viability of 3-dimensional FQHE and the application of the concept of generalized duality to anyonic superconductivity are discussed. PACS numbers: 71.28, 71.10, 72.20M 1 Laughlin’s theory [1] of fractional quantum Hall effect (FQHE) elegantly describes the incompressibility of the 2-dimensional electronic system under the influence of a strong, uniform magnetic field. The theory is pivoted on an ansätz which is taken to be the ground state ψm of the many-body system displaying FQHE: ψm = ∏ (wa − wb) m exp( − 1 4ℓ2 ∑ |wa | 2), (1) a&lt...

References (16)

  1. R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
  2. Y. W. Suen, L. W. Engel, M. B. Santos, M. Shayegan and D. C. Tsui, Phys. Rev. Lett. 68, 1379 (1992).
  3. J. P. Eisenstein, G. S. Boebinger, L. N. Pfeiffer, K. W. West and Song He, Phys. Rev. Lett. 68, 1383 (1992).
  4. D. Yoshioka, A. MacDonald and S. Girvin, Phys. Rev. B39, 1932 (1988).
  5. B. I. Halperin, Helv. Phys. Acta 56 75, (1983).
  6. C. Ting and C. H. Lai, Mod. Phys. Lett. B5 1293, (1991).
  7. C. Ting and C. H. Lai, Spinning Braid Group Representation and the Frac- tional Quantum Hall Effect, NUS preprint NUS/HEP/92011, (Jan, 1992) (hepth@xxx/ 9202024).
  8. C. H. Lai and C. Ting, Phys. Lett. B265, 341 (1991).
  9. Y. S. Wu, Phys. Rev. Lett. 52, 2103 (1984).
  10. E. Verlinde, A note on braid statistics and the non-abelian Aharonov-Bohm effect, preprint IASSNS-HEP-90/60, Jan 1991.
  11. V. Knizhnik and A. Zamolodchikov, Nucl. Phys. B247, 83 (1984).
  12. C. Ting, Mutual statistics, braid group, and the fractional quantum Hall effect, preprint NUS/HEP/920502, (May, 1992).
  13. F. Wilczek, Disassembling Anyons, preprint IASSNS-HEP-91/70, Jan 1992.
  14. A. Zee, in the Proceedings of the TCSUH Workshop on Physics and Mathematics of Anyons, edited by S. S. Chern, C. W. Chu and C. S. Ting, Int. J. Mod. Phys. B5, 1629 (1991);
  15. J. Fröhlich and A. Zee, Nucl. Phys. B364, 517 (1991).
  16. Z. F. Ezawa and A. Iwazaki, Chern-Simons Gauge Theory for Double-Layer Elec- tron System, preprint TU-402, Nisho-18 (May, 1992).