Academia.eduAcademia.edu

Outline

Remote Sensing Systems for Ocean: A Review (Part 1: Passive Systems)

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing

https://doi.org/10.1109/JSTARS.2021.3130789

Abstract

Reliable, accurate, and timely information about oceans is important for many applications, including water resource management, hydrological cycle monitoring, environmental studies, agricultural and ecosystem health applications, economy, and the overall health of the environment. In this regard, remote sensing (RS) systems offer exceptional advantages for mapping and monitoring various oceanographic parameters with acceptable temporal and spatial resolutions over the oceans and coastal areas. So far, different methods have been developed to study oceans using various RS systems. This urges the necessity of having review studies that comprehensively discuss various RS systems, including passive and active sensors, and their advantages and limitations for ocean applications. In this article, the goal is to review most RS systems and approaches that have been worked on marine applications. This review paper is divided into two parts. Part 1 is dedicated to the passive RS systems for ocean studies. As such, four primary passive systems, including optical, thermal infrared radiometers, microwave radiometers, and Global Navigation Satellite Systems, are comprehensively discussed. Additionally, this article summarizes the main passive RS sensors and satellites, which have been utilized for different oceanographic applications. Finally, various oceanographic parameters, which can be retrieved from the data acquired by passive RS systems, along with the corresponding methods, are discussed.

References (215)

  1. R. Costanza, "The ecological, economic, and social importance of the oceans," Ecological, Econ., Social Importance Oceans, vol. 31, no. 2, pp. 199-213, Nov. 1999, doi: 10.1016/S0921-8009(99)00079-8.
  2. C. M. Lalli and T. R. Parsons, Biological Oceanography: An Introduction, 2nd ed. Oxford, U.K.: Butterworth-Heinemann, 1997.
  3. L. Cheng, J. Abraham, Z. Hausfather, and K. E. Trenberth, "How fast are the oceans warming?," Science, vol. 363, no. 6423, pp. 128-129, Jan. 2019, doi: 10.1126/science.aav7619.
  4. J. D. Santos, I. Vitorino, F. Reyes, F. Vicente, and O. M. Lage, "From ocean to medicine: Pharmaceutical applications of metabolites from marine bacteria," Antibiotics, vol. 9, no. 8, Jul. 2020, Art. no. 455, doi: 10.3390/antibiotics9080455.
  5. G. K. Devi, B. P. Ganasri, and G. S. Dwarakish, "Applications of remote sensing in satellite oceanography: A review," Aquatic Procedia, vol. 4, pp. 579-584, 2015, doi: 10.1016/j.aqpro.2015.02.075.
  6. H. Zhang, E. Devred, A. Fujiwara, Z. Qiu, and X. Liu, "Estimation of phytoplankton taxonomic groups in the Arctic Ocean using phytoplank- ton absorption properties: Implication for ocean-color remote sensing," Opt. Exp., vol. 26, no. 24, pp. 32280-32301, 2018.
  7. M. J. Devlin et al., "Combining in-situ water quality and remotely sensed data across spatial and temporal scales to measure variability in wet season chlorophyll-A: Great Barrier Reef Lagoon (Queensland, Australia)," Ecological Processes, vol. 2, no. 1, 2013, Art. no. 31, doi: 10.1186/2192-1709-2-31.
  8. IOCCG, Earth Observations in Support of Global Water Quality Moni- toring. Dartmouth, NS, Canada: Int. Ocean Colour Coordinating Group, 2018.
  9. L.-L. Fu, T. Lee, W. T. Liu, and R. Kwok, "50 years of satellite remote sensing the ocean," Meteorological Monographs, vol. 59, pp. 5.1-5.46, 2019, doi: 10.1175/AMSMONOGRAPHS-D-18-0010.1.
  10. R. J. W. Brewin et al., "The ocean colour climate change initiative: III. A round-robin comparison on in-water bio-optical algorithms," Remote Sens. Environ., vol. 162, pp. 271-294, 2015.
  11. H. Liu, Q. Zhou, Q. Li, S. Hu, T. Shi, and G. Wu, "Determining switching threshold for NIR-SWIR combined atmospheric correction algorithm of ocean color remote sensing," ISPRS J. Photogrammetry Remote Sens., vol. 153, pp. 59-73, 2019.
  12. H. R. Gordon, "Some reflections on thirty five years of ocean color remote sensing," in Oceanography From Space. Dordrecht, The Netherlands: Springer-Verlag, 2010, pp. 289-306.
  13. T. Dickey, M. Lewis, and G. Chang, "Optical oceanography: Recent advances and future directions using global remote sensing and in situ observations," Rev. Geophys., vol. 44, 2006, Art. no. 1.
  14. P. Dorji and P. Fearns, "Atmospheric correction of geostationary Himawari-8 satellite data for total suspended sediment mapping: A case study in the coastal waters of Western Australia," ISPRS J. Photogram- metry Remote Sens., vol. 144, pp. 81-93, 2018.
  15. X. He, K. Stamnes, Y. Bai, W. Li, and D. Wang, "Effects of earth curvature on atmospheric correction for ocean color remote sensing," Remote Sens. Environ., vol. 209, pp. 118-133, 2018.
  16. A. G. Myasoedov, V. N. Kudryavtsev, B. Chapron, and J. A. Johannessen, "Sunglitter imagery of the ocean surface phenomena," in Proc. SeaSAR, 2010, Art. no. ESA SP-679.
  17. V. Kudryavtsev, A. Myasoedov, B. Chapron, J. A. Johannessen, and F. Collard, "Joint sun-glitter and radar imagery of surface slicks," Remote Sens. Environ., vol. 120, pp. 123-132, May 2012, doi: 10.1016/j.rse.2011.06.029.
  18. L. Feng et al., "Exploring the potential of Rayleigh-corrected reflectance in coastal and inland water applications: A simple aerosol correction method and its merits," ISPRS J. Photogrammetry Remote Sens., vol. 146, pp. 52-64, 2018.
  19. M. Wang and H. R. Gordon, "Sensor performance requirements for at- mospheric correction of satellite ocean color remote sensing," Opt. Exp., vol. 26, no. 6, Mar. 2018, Art. no. 7390, doi: 10.1364/OE.26.007390.
  20. X. He, D. Pan, Y. Bai, Z. Mao, and F. Gong, "General exact Rayleigh scattering look-up-table for ocean color remote sensing," Remote Sens. Mar. Environ., vol. 6406, 2006, Art. no. 64061D.
  21. G. Liu, Y. Li, H. Lyu, S. Wang, C. Du, and C. Huang, "An improved land target-based atmospheric correction method for Lake Taihu," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 9, no. 2, pp. 793-803, Feb. 2015.
  22. M. Wang and L. Jiang, "Atmospheric correction using the information from the short blue band," IEEE Trans. Geosci. Remote Sens., vol. 56, no. 10, pp. 6224-6237, Oct. 2018.
  23. H. Ye, C. Chen, and C. Yang, "Atmospheric correction of Landsat-8/OLI imagery in turbid estuarine waters: A case study for the Pearl River estuary," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 1, pp. 252-261, Jan. 2016.
  24. N. Pahlevan, J.-C. Roger, and Z. Ahmad, "Revisiting short-wave-infrared (SWIR) bands for atmospheric correction in coastal waters," Opt. Exp., vol. 25, no. 6, pp. 6015-6035, 2017.
  25. S. Bi et al., "Inland water atmospheric correction based on turbidity classification using OLCI and SLSTR synergistic observations," Remote Sens., vol. 10, no. 7, 2018, Art. no. 1002.
  26. S. B. Groom et al., "Satellite ocean colour: Current status and fu- ture perspective," Frontiers Mar. Sci., vol. 6, 2019, Art. no. 485, doi: 10.3389/fmars.2019.00485.
  27. X. Yu, H. Yi, X. Liu, Y. Wang, X. Liu, and H. Zhang, "Remote-sensing estimation of dissolved inorganic nitrogen concentration in the Bohai Sea using band combinations derived from MODIS data," Int. J. Remote Sens., vol. 37, no. 2, pp. 327-340, 2016.
  28. L. Deng et al., "Retrieving phytoplankton size class from the absorption coefficient and chlorophyll a concentration based on support vector machine," Remote Sens., vol. 11, no. 9, 2019, Art. no. 1054.
  29. Z. Lee, K. L. Carder, and R. A. Arnone, "Deriving inherent optical properties from water color: A multiband quasi-analytical algorithm for optically deep waters," Appl. Opt., vol. 41, no. 27, pp. 5755-5772, 2002.
  30. S. B. Groom et al., "Satellite ocean colour: Current status and future perspective," Frontiers Mar. Sci., vol. 6, 2019, Art. no. 485.
  31. W. Shi and M. Wang, "A blended inherent optical property algorithm for global satellite ocean color observations," Limnol. Oceanogr. Methods, vol. 17, no. 7, pp. 377-394, 2019.
  32. X. Huang et al., "Evaluation of four atmospheric correction algorithms for GOCI images over the Yellow Sea," Remote Sens., vol. 11, no. 14, 2019, Art. no. 1631.
  33. K. L. Carder, F. R. Chen, Z. Lee, S. K. Hawes, and J. P. Cannizzaro, "MODIS ocean science team algorithm theoretical basis document," ATBD 19 Case 2 Chlorophyll a, Version 7. 30, 2003.
  34. T. W. Cui et al., "Remote sensing of chlorophyll a concentration in turbid coastal waters based on a global optical water classification system," ISPRS J. Photogrammetry Remote Sens., vol. 163, pp. 187-201, 2020.
  35. Y.-S. Son and H. Kim, "Empirical ocean color algorithms and bio- optical properties of the western coastal waters of Svalbard, Arc- tic," ISPRS J. Photogrammetry Remote Sens., vol. 139, pp. 272-283, 2018.
  36. J. E. O'Reilly and P. J. Werdell, "Chlorophyll algorithms for ocean color sensors -OC4, OC5 & OC6," Remote Sens. Environ., vol. 229, pp. 32-47, Aug. 2019, doi: 10.1016/j.rse.2019.04.021.
  37. C. Hu, Z. Lee, and B. Franz, "Chlorophyll aalgorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference," J. Geophys. Res. Oceans, vol. 117, no. C01011, 2012.
  38. C. Neil, E. Spyrakos, P. D. Hunter, and A. N. Tyler, "A global approach for chlorophyll-a retrieval across optically complex inland waters based on optical water types," Remote Sens. Environ., vol. 229, pp. 159-178, 2019.
  39. J. Wei, Z. Lee, and S. Shang, "A system to measure the data quality of spectral remote-sensing reflectance of aquatic environments," J. Geophys. Res. Oceans, vol. 121, no. 11, pp. 8189-8207, 2016.
  40. T. Cui, J. Zhang, S. Groom, L. Sun, T. Smyth, and S. Sathyendranath, "Validation of MERIS ocean-color products in the Bohai Sea: A case study for turbid coastal waters," Remote Sens. Environ., vol. 114, no. 10, pp. 2326-2336, 2010.
  41. P. J. Werdell et al., "An overview of approaches and challenges for retrieving marine inherent optical properties from ocean color remote sensing," Prog. Oceanogr., vol. 160, pp. 186-212, Jan. 2018, doi: 10.1016/j.pocean.2018.01.001.
  42. S. Parsons, M. Amani, and A. Moghimi, "Ocean colour mapping us- ing remote sensing technology and an unsupervised machine learning algorithm," J. Ocean Technol., vol. 16, no. 3, 2021, Art. no. 3. [On- line]. Available: https://www.thejot.net/article-preview/?show_article_ preview=1281
  43. M. Wang, "Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: Simulations," Appl. Opt., vol. 46, no. 9, pp. 1535-1547, 2007.
  44. Z. Lee, J. Marra, M. J. Perry, and M. Kahru, "Estimating oceanic primary productivity from ocean color remote sensing: A strate- gic assessment," J. Mar. Syst., vol. 149, pp. 59-59, Sep. 2015, doi: 10.1016/j.jmarsys.2014.11.015.
  45. D. B. Allison, D. Stramski, and B. G. Mitchell, "Seasonal and interannual variability of particulate organic carbon within the southern ocean from satellite ocean color observations," J. Geophys. Res. Oceans, vol. 115, no. C6, 2010.
  46. C. E. Del Castillo and R. L. Miller, "On the use of ocean color re- mote sensing to measure the transport of dissolved organic carbon by the Mississippi River Plume," Remote Sens. Environ., vol. 112, no. 3, pp. 836-844, 2008.
  47. G. B. Brassington and P. Divakaran, "The theoretical impact of remotely sensed sea surface salinity observations in a multi-variate assimilation system," Ocean Model., vol. 27, no. 1/2, pp. 70-81, 2009.
  48. S. Chen and C. Hu, "Estimating sea surface salinity in the northern Gulf of Mexico from satellite ocean color measurements," Remote Sens. Environ., vol. 201, no. Feb., pp. 115-132, 2017, doi: 10.1016/j.rse.2017.09.004.
  49. B. Hassani, M. R. Sahebi, and R. M. Asiyabi, "Oil spill four-class classification using UAVSAR polarimetric data," Ocean Sci. J., vol. 55, no. 3, pp. 433-443, 2020.
  50. W. Alpers, B. Holt, and K. Zeng, "Oil spill detection by imaging radars: Challenges and pitfalls," Remote Sens. Environ., vol. 201, pp. 133-147, 2017.
  51. M. N. Jha, J. Levy, and Y. Gao, "Advances in remote sensing for oil spill disaster management: State-of-the-art sensors technology for oil spill surveillance," Sensors, vol. 8, no. 1, pp. 236-255, 2008.
  52. S.-H. Park, H.-S. Jung, and M.-J. Lee, "Oil spill mapping from Kompsat-2 high-resolution image using directional median filtering and artificial neural network," Remote Sens., vol. 12, no. 2, 2020, Art. no. 253.
  53. Q. Bao, M. Lin, Y. Zhang, X. Dong, S. Lang, and P. Gong, "Ocean surface current inversion method for a Doppler scatterometer," IEEE Trans. Geosci. Remote Sens., vol. 55, no. 11, pp. Nov. 2017.
  54. G. S. E. Lagerloef, G. T. Mitchum, R. B. Lukas, and P. P. Niiler, "Tropical Pacific near-surface currents estimated from altimeter, wind, and drifter data," J. Geophys. Res. Oceans, vol. 104, no. C10, pp. 23313-23326, 1999.
  55. V. Klemas, "Remote sensing of coastal and ocean currents: An overview," J. Coastal Res., vol. 28, no. 3, pp. 576-586, 2012.
  56. V. Kudryavtsev, M. Yurovskaya, B. Chapron, F. Collard, and C. Donlon, "Sun glitter imagery of ocean surface waves. Part 1: Directional spectrum retrieval and validation," J. Geophys. Res. Oceans, vol. 122, no. 2, pp. 1369-1383, 2017.
  57. M. Yurovskaya, V. Kudryavtsev, B. Chapron, and F. Collard, "Ocean surface current retrieval from space: The Sentinel-2 multispectral capa- bilities," Remote Sens. Environ., vol. 234, 2019, Art. no. 111468, doi: 10.1016/j.rse.2019.111468.
  58. S. Sandven, O. M. Johannessen, and K. Kloster, "Sea ice monitoring by remote sensing," in Encyclopedia of Analytical Chemistry. Hoboken, NJ, USA: Wiley, 2006.
  59. L. Ning et al., "Using remote sensing to estimate sea ice thickness in the Bohai Sea, China based on ice type," Int. J. Remote Sens., vol. 30, no. 17, pp. 4539-4552, 2009.
  60. M. Liu, Y. Dai, J. Zhang, X. Zhang, J. Meng, and Q. Xie, "PCA-based sea-ice image fusion of optical data by HIS transform and SAR data by wavelet transform," Acta Oceanol. Sinica, vol. 34, no. 3, pp. 59-67, 2015.
  61. H. Su, B. Ji, and Y. Wang, "Sea ice extent detection in the Bohai Sea using Sentinel-3 OLCI data," Remote Sens., vol. 11, no. 20, 2019, Art. no. 2436.
  62. C. Zhao, C.-Z. Qin, and J. Teng, "Mapping large-area tidal flats without the dependence on tidal elevations: A case study of Southern China," ISPRS J. Photogrammetry Remote Sens., vol. 159, pp. 256-270, 2020.
  63. C. Small and R. J. Nicholls, "A global analysis of human settlement in coastal zones," J. Coastal Res., vol. 19, no. 3, pp. 584-599, 2003.
  64. E. B. Barbier, S. D. Hacker, C. Kennedy, E. W. Koch, A. C. Stier, and B. R. Silliman, "The value of estuarine and coastal ecosystem services," Ecological Monographs, vol. 81, no. 2, pp. 169-193, 2011.
  65. K. Zhang, X. Dong, Z. Liu, W. Gao, Z. Hu, and G. Wu, "Mapping tidal flats with Landsat 8 images and google Earth engine: A case study of the China's Eastern Coastal zone circa 2015," Remote Sens., vol. 11, no. 8, 2019, Art. no. 924.
  66. U. Kanjir, H. Greidanus, and K. Oštir, "Vessel detection and classification from spaceborne optical images: A literature survey," Remote Sens. Environ., vol. 207, pp. 1-26, Mar. 2018, doi: 10.1016/j.rse.2017.12.033.
  67. Q. Xing, R. Meng, M. Lou, L. Bing, and X. Liu, "Remote sensing of ships and offshore oil platforms and mapping the marine oil spill risk source in the Bohai Sea," Aquatic Procedia, vol. 3, pp. 127-132, 2015.
  68. Q. Li, L. Mou, Q. Liu, Y. Wang, and X. X. Zhu, "HSF-Net: Mul- tiscale deep feature embedding for ship detection in optical remote sensing imagery," IEEE Trans. Geosci. Remote Sens., vol. 56, no. 12, pp. 7147-7161, Dec. 2018.
  69. E. P. Green et al., World Atlas of Seagrasses. Berkeley, CA, USA: Univ. California Press, 2003.
  70. M. Amani, C. Macdonald, S. Mahdavi, M. Gullage, and J. So, "Aquatic vegetation mapping using machine learning algorithms and bathymetric lidar data: A case study from Newfoundland, Canada," J. Ocean Technol., vol. 16, no. 3, 2021, Art. no. 74. [Online]. Available: https://www.thejot. net/article-preview/?show_article_preview=1278
  71. L. M. Nordlund, E. W. Koch, E. B. Barbier, and J. C. Creed, "Seagrass ecosystem services and their variability across genera and geographical regions," PLoS One, vol. 11, no. 10, 2016, Art. no. e0163091.
  72. D. Traganos, B. Aggarwal, D. Poursanidis, K. Topouzelis, N. Chrysoulakis, and P. Reinartz, "Towards global-scale seagrass mapping and monitoring using Sentinel-2 on Google Earth Engine: The case study of the Aegean and Ionian Seas," Remote Sens., vol. 10, no. 8, Aug. 2018, Art. no. 1227, doi: 10.3390/rs10081227.
  73. I. Caballero and R. P. Stumpf, "Retrieval of nearshore bathymetry from Sentinel-2A and 2B satellites in South Florida Coastal waters," Estuarine, Coastal, Shelf Sci., vol. 226, 2019, Art. no. 106277.
  74. G. Casal, X. Monteys, J. Hedley, P. Harris, C. Cahalane, and T. McCarthy, "Assessment of empirical algorithms for bathymetry extraction using Sentinel-2 data," Int. J. Remote Sens., vol. 40, no. 8, pp. 2855-2879, 2019.
  75. A. G. Dekker et al., "Intercomparison of shallow water bathymetry, hydro-optics, and Benthos mapping techniques in Australian and Caribbean coastal environments," Limnol. Oceanogr. Methods, vol. 9, no. 9, pp. 396-425, 2011.
  76. R. P. Stumpf, K. Holderied, and M. Sinclair, "Determination of water depth with high-resolution satellite imagery over variable bottom types," Limnol. Oceanogr., vol. 48, no. 1, (pt. 2), pp. 547-556, 2003.
  77. M. Planck, "On the law of distribution of energy in the normal spectrum," Ann. Phys., vol. 4, no. 553, 1901.
  78. P. J. Minnett et al., "Half a century of satellite remote sensing of sea-surface temperature," Remote Sens. Environ., vol. 233, 2019, Art. no. 111366.
  79. H. Lee, J.-S. Won, and W. Park, "An atmospheric correction using high resolution numerical weather prediction models for satellite-borne single- channel mid-wavelength and thermal infrared imaging sensors," Remote Sens., vol. 12, no. 5, 2020, Art. no. 853.
  80. B. Tardy, V. Rivalland, M. Huc, O. Hagolle, S. Marcq, and G. Boulet, "A software tool for atmospheric correction and surface temperature estimation of Landsat infrared thermal data," Remote Sens., vol. 8, no. 9, 2016, Art. no. 696.
  81. C. J. Merchant and P. L. Borgne, "Retrieval of sea surface temperature from space, based on modeling of infrared radiative transfer: Capa- bilities and limitations," J. Atmos. Ocean. Technol., vol. 21, no. 11, pp. 1734-1746, 2004.
  82. B. Petrenko, A. Ignatov, Y. Kihai, and A. Heidinger, "Clear-sky mask for the advanced clear-sky processor for oceans," J. Atmos. Ocean. Technol., vol. 27, no. 10, pp. 1609-1623, 2010.
  83. C. J. Merchant, A. R. Harris, E. Maturi, and S. MacCallum, "Probabilistic physically based cloud screening of satellite infrared imagery for oper- ational sea surface temperature retrieval," Quart. J. Roy. Meteorological Soc., vol. 131, no. 611, pp. 2735-2755, 2005.
  84. K. A. Kilpatrick, G. Podestá, E. Williams, S. Walsh, and P. J. Minnett, "Alternating decision trees for cloud masking in MODIS and VIIRS NASA sea surface temperature products," J. Atmos. Ocean. Technol., vol. 36, no. 3, pp. 387-407, 2019.
  85. I. J. Barton, "Satellite-derived sea surface temperatures: Current status," J. Geophys. Res. Oceans, vol. 100, no. C5, pp. 8777-8790, 1995.
  86. L. M. McMillin and D. S. Crosby, "Some physical interpretations of statistically derived coefficients for split-window corrections to satellite- derived sea surface temperatures," Quart. J. Roy. Meteorological Soc., vol. 111, no. 469, pp. 867-871, 1985.
  87. S. Martin, An Introduction to Ocean Remote Sensing. Cambridge, U.K.: Cambridge Univ. Press, 2014.
  88. K. A. Kilpatrick et al., "A decade of sea surface temperature from MODIS," Remote Sens. Environ., vol. 165, pp. 27-41, 2015.
  89. J. Fu, C. Chen, B. Guo, Y. Chu, and H. Zheng, "A split-window method to retrieving sea surface temperature from Landsat 8 thermal infrared remote sensing data in offshore waters," Estuarine, Coastal, Shelf Sci., vol. 236, 2020, Art. no. 106626.
  90. C. J. Merchant, P. L. Borgne, A. Marsouin, and H. Roquet, "Op- timal estimation of sea surface temperature from split-window ob- servations," Remote Sens. Environ., vol. 112, no. 5, pp. 2469-2484, 2008.
  91. B.-H. Tang, "Nonlinear split-window algorithms for estimating land and sea surface temperatures from simulated Chinese Gaofen-5 satellite data," IEEE Trans. Geosci. Remote Sens., vol. 56, no. 11, pp. 6280-6289, Nov. 2018.
  92. B. Petrenko, A. Ignatov, Y. Kihai, J. Stroup, and P. Dash, "Evaluation and selection of SST regression algorithms for JPSS VIIRS," J. Geophys. Res. Atmos., vol. 119, no. 8, pp. 4580-4599, 2014.
  93. D. T. Llewellyn-Jones, P. J. Minnett, R. W. Saunders, and A. M. Zavody, "Satellite multichannel infrared measurements of sea surface temperature of the NE Atlantic Ocean using AVHRR/2," Quart. J. Roy. Meteorological Soc., vol. 110, no. 465, pp. 613-631, 1984.
  94. X. Meng and J. Cheng, "Estimating land and sea surface temperature from cross-calibrated Chinese Gaofen-5 thermal infrared data using split- window algorithm," IEEE Geosci. Remote Sens. Lett., vol. 17, no. 3, pp. 509-513, Mar. 2019.
  95. P. J. Minnett, J. R. Eyre, and R. W. Pescod, "The variability of the North Atlantic marine atmosphere and its relevance to remote sensing," Int. J. Remote Sens., vol. 8, no. 6, pp. 871-880, 1987.
  96. S. L. Haines, G. J. Jedlovec, and S. M. Lazarus, "A MODIS sea surface temperature composite for regional applications," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 9, pp. 2919-2927, Sep. 2007.
  97. R. D. Putra et al., "Detection of reef scale thermal stress with Aqua and Terra MODIS satellite for coral bleaching phenomena," AIP Conf. Proc., vol. 2094, no. 1, 2019, Art. no. 20024.
  98. D. Yuan, J. Zhu, C. Li, and D. Hu, "Cross-shelf circulation in the Yellow and East China Seas indicated by MODIS satellite observations," J. Mar. Syst., vol. 70, no. 1/2, pp. 134-149, 2008.
  99. S. J. Goodman, "GOES-R series introduction," in The GOES-R Series. Amsterdam, The Netherlands: Elsevier, 2020, pp. 1-3.
  100. J. Ji, J. Ma, C. Dong, J. C. H. Chiang, and D. Chen, "Regional dependence of atmospheric responses Oceanic Eddies in the North Pacific Ocean," Remote Sens., vol. 12, no. 7, 2020, Art. no. 1161.
  101. B. S. Ferster, B. Subrahmanyam, and A. M. Macdonald, "Confirmation of ENSO-Southern Ocean teleconnections using satellite-derived SST," Remote Sens., vol. 10, no. 2, 2018, Art. no. 331.
  102. A. Wirasatriya, R. Y. Setiawan, and P. Subardjo, "The effect of ENSO on the variability of chlorophyll-a and sea surface temperature in the Maluku Sea," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 12, pp. 5513-5518, Dec. 2017.
  103. Y.-L. Wu, M.-A. Lee, L.-C. Chen, J.-W. Chan, and K.-W. Lan, "Evaluat- ing a suitable aquaculture site selection model for cobia (Rachycentron canadum) during extreme events in the inner bay of the Penghu Islands, Taiwan," Remote Sens., vol. 12, no. 17, 2020, Art. no. 2689.
  104. R. Mugo and S.-I. Saitoh, "Ensemble modelling of Skipjack tuna (Kat- suwonus pelamis) habitats in the western North Pacific using satellite remotely sensed data; a comparative analysis using machine-learning models," Remote Sens., vol. 12, no. 16, 2020, Art. no. 2591.
  105. R. A. B. Mason, W. J. Skirving, and S. G. Dove, "Integrating physiology with remote sensing to advance the prediction of coral bleaching events," Remote Sens. Environ., vol. 246, 2020, Art. no. 111794.
  106. W. G. Large and S. G. Yeager, "On the observed trends and changes in global sea surface temperature and air-sea heat fluxes (1984-2006)," J. Climate, vol. 25, no. 18, pp. 6123-6135, 2012.
  107. C. J. Merchant et al., "Satellite-based time-series of sea-surface tem- perature since 1981 for climate applications," Sci. Data, vol. 6, no. 1, pp. 1-18, 2019.
  108. A. Pisano et al., "New evidence of Mediterranean climate change and variability from sea surface temperature observations," Remote Sens., vol. 12, no. 1, p. 132, 2020.
  109. A. Olsen, J. A. Triñanes, and R. Wanninkhof, "Sea-air flux of CO2 in the Caribbean Sea estimated using in situ and remote sensing data," Remote Sens. Environ., vol. 89, no. 3, pp. 309-325, 2004.
  110. M. Konda, N. Imasato, and A. Shibata, "Analysis of the global relation- ship of biennial variation of sea surface temperature and air-sea heat flux using satellite data," J. Oceanogr., vol. 52, no. 6, pp. 717-746, 1996.
  111. K. A. Alawad, A. M. Al-Subhi, M. A. Alsaafani, and T. M. Alraddadi, "Atmospheric forcing of the high and low extremes in the sea surface tem- perature over the Red Sea and associated Chlorophyll-a concentration," Remote Sens., vol. 12, no. 14, 2020, Art. no. 2227.
  112. R. Torres et al., "Sensitivity of modeled CO2 air-sea flux in a coastal environment to surface temperature gradients, surfactants, and satellite data assimilation," Remote Sens., vol. 12, no. 12, 2020, Art. no. 2038.
  113. C. Xiao et al., "A spatiotemporal deep learning model for sea surface temperature field prediction using time-series satellite data," Environ. Model. Softw., vol. 120, 2019, Art. no. 104502.
  114. A. C. Stuart-Menteth, I. S. Robinson, and P. G. Challenor, "A global study of diurnal warming using satellite-derived sea surface temperature," J. Geophys. Res. Oceans, vol. 108, 2003, Art. no. C5.
  115. X. Liu, D.-L. Zhang, and J. Guan, "Parameterizing sea surface tem- perature cooling induced by tropical cyclones: 2. Verification by ocean drifters," J. Geophys. Res. Oceans, vol. 124, no. 2, pp. 1232-1243, 2019.
  116. P. Katsafados, E. Mavromatidis, A. Papadopoulos, and I. Pytharoulis, "Numerical simulation of a deep mediterranean storm and its sensitivity on sea surface temperature," Natural Hazards Earth Syst. Sci., vol. 11, no. 5, 2011, Art. no. 1233.
  117. J. Amelien, "Remote sensing of snow with passive microwave radiometers-A review of current algorithms," Report No. 1019, Oslo: Norsk Regnesentral, 2008.
  118. E. Ho, "Advanced microwave scanning radiometer (AMSR) SIPS." [On- line]. Available: earthdata.nasa.gov
  119. D. Gayfulin, M. Tsyrulnikov, and A. Uspensky, "Assessment and adaptive correction of observations in atmospheric sounding channels of the satel- lite microwave radiometer MTVZA-GY," Pure Appl. Geophys., vol. 175, no. 10, pp. 3653-3670, Oct. 2018, doi: 10.1007/s00024-018-1917-7.
  120. F. J. Wentz, "Measurement of oceanic wind vector using satellite mi- crowave radiometers," IEEE Trans. Geosci. Remote Sens., vol. 30, no. 5, pp. 960-972, May 1992.
  121. T. T. Wilheit, "Electrically scanning microwave radiometer (ESMR)," NASA Space Science Data Coordinated Archive, NASA, Washing- ton, DC, USA. [Online]. Available: https://nssdc.gsfc.nasa.gov/nmc/ experiment/display.action?id=1972-097A-04
  122. SMMR, SSM/I, and SSMIS Sensors, National Snow and Ice Data Center, 2018. [Online]. Available: https://nsidc.org/data/smmr_ssmi
  123. WMO OSCAR, Satellite: DMSP-F16, 2020. [Online]. Available: https: //space.oscar.wmo.int/satellites/view/dmsp_f16
  124. SMOS -ESA Earth Observation Missions -Earth Online -ESA, Euro- pean Space Agency. [Online]. Available: https://earth.esa.int/eogateway/ missions/smos
  125. J. Font et al., "SMOS first data analysis for sea surface salinity determi- nation," Int. J. Remote Sens., vol. 34, no. 9, pp. 3654-3670, 2013, doi: 10.1080/01431161.2012.716541.
  126. P. W. Gaiser et al., "The WindSat spaceborne polarimetric mi- crowave radiometer: Sensor description and early orbit performance," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 11, pp. 2347-2361, Nov. 2004.
  127. W. J. Wilson, S. J. Dinardo, and S. V. Hsiao, "Polarimetric mi- crowave wind radiometer model function and retrieval testing for Wind- Sat," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 3, pp. 584-595, Mar. 2006.
  128. S. Hong and I. Shin, "Wind speed retrieval based on sea surface roughness measurements from spaceborne microwave radiometers," J. Appl. Meteo- rol. Climatol., vol. 52, no. 2, pp. 507-516, Feb. 2013, doi: 10.1175/JAM- C-D-11-0209.1.
  129. R. Lumpkin and M. Pazos, "Measuring surface currents with surface velocity program drifters: The instrument, its data, and some recent results," in Proc. Lagrangian Anal. Prediction Coastal Ocean Dyn., vol. 2, pp. 39-67, 2007.
  130. S. L. Castro, G. A. Wick, and W. J. Emery, "Evaluation of the relative per- formance of sea surface temperature measurements from different types of drifting and moored buoys using satellite-derived reference products," J. Geophys. Res. Oceans, vol. 117, no. 2, 2012, Art. no. C02029, doi: 10.1029/2011JC007472.
  131. C. J. Donlon et al., "Toward improved validation of satel- lite sea surface skin temperature measurements for cli- mate research," J. Climate, vol. 15, pp. 353-369, 2002, doi: 10.1175/1520-0442(2002)015<0353:TIVOSS>2.0.CO;2.
  132. R. Branch, A. T. Jessup, and R. Branch, "Integrated ocean skin and bulk temperature measurements using the calibrated infrared in situ measurement system (CIRIMS) and through-hull ports," J. Atmos. Ocean. Technol., vol. 25, pp. 579-597, 2008, doi: 10.1175/2007JTECHO479.1.
  133. P. J. Minnett, M. Smith, and B. Ward, "Measurements of the oceanic thermal skin effect," Deep-Sea Res. Part II Top. Stud. Oceanogr., vol. 58, no. 6, pp. 861-868, Mar. 2011, doi: 10.1016/j.dsr2.2010.10.024.
  134. B. and M. A. Donelan, "Thermometric measurements of the molec- ular sublayer at the air-water interface," Geophys. Res. Lett., vol. 33, no. 7, p. L07605, Apr. 2006, doi: 10.1029/2005GL024769.
  135. Y. Wu, M. Li, Y. Bao, and G. P. Petropoulos, "Cross-validation of radio-frequency-interference signature in satellite microwave radiometer observations over the ocean," Remote Sens., vol. 12, no. 20, Oct. 2020, Art. no. 3433, doi: 10.3390/rs12203433.
  136. C. L. Gentemann, "Three way validation of MODIS and AMSR-E sea surface temperatures," J. Geophys. Res. Oceans, vol. 119, no. 4, pp. 2583-2598, Apr. 2014, doi: 10.1002/2013JC009716.
  137. A. G. O'carroll, J. R. Eyre, and R. W. Saunders, "Three-way error analysis between AATSR, AMSR-E, and in situ sea surface temperature observations," J. Atmos. Ocean. Technol., vol. 25, no. 7, pp. 1197-1207, 2008, doi: 10.1175/2007JTECHO542.1.
  138. C. González-Haro and J. Isern-Fontanet, "Assessment of ocean surface currents reconstruction at a global scale from the synergy between mi- crowave and altimetric measurements," in Proc. Int. Geosci. Remote Sens. Symp., 2013, pp. 2950-2953, doi: 10.1109/IGARSS.2013.6723444.
  139. G. Lagerloef and J. Font, "SMOS and aquarius/SAC-D missions: The era of spaceborne salinity measurements is about to begin," in Oceanography From Space: Revisited. Dordrecht, The Netherlands: Springer, 2010, pp. 35-58.
  140. S. H. Yueh, R. West, W. J. Wilson, F. K. Li, E. G. Njoku, and Y. Rahmat- Samii, "Error sources and feasibility for microwave remote sensing of ocean surface salinity," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 5, pp. 1049-1060, May 2001.
  141. D. M. L. Vine, J. B. Zaitzeff, E. J. D'Sa, J. L. Miller, C. Swift, and M. Goodberlet, "Chapter 19 Sea surface salinity: Toward an opera- tional remote-sensing system," Elsevier Oceanogr. Ser., vol. 63, no. C, pp. 321-335, Jan. 2000, doi: 10.1016/S0422-9894(00)80020-3.
  142. J. Font, A. Camps, and J. Ballabrera-Poy, "Microwave aperture synthesis radiometry: Paving the path for sea surface salinity measurement from space," in Remote Sensing of the European Seas. Dordrecht, The Nether- lands: Springer, pp. 223-238.
  143. J. Font et al., "SMOS: The challenging sea surface salinity measurement from space," Proc. IEEE, vol. 98, no. 5, pp. 649-665, May 2010, doi: 10.1109/JPROC.2009.2033096.
  144. K. D. McMullan et al., "SMOS: The payload," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 3, pp. 594-605, Mar. 2008.
  145. X. Yin, J. Boutin, E. Dinnat, Q. Song, and A. Martin, "Roughness and foam signature on SMOS-MIRAS brightness temperatures: A semi- theoretical approach," Remote Sens. Environ., vol. 180, pp. 221-233, Jul. 2016, doi: 10.1016/j.rse.2016.02.005.
  146. J. Boutin, J. L. Vergely, S. Marchand, N. Kolodziejczyk, and N. Reul, "Revised mitigation of systematic errors in SMOS sea surface salinity," in Proc. Int. Geosci. Remote Sens. Symp., Oct. 2018, pp. 5640-5643, doi: 10.1109/IGARSS.2018.8519011.
  147. J. Boutin et al., "New SMOS sea surface salinity with reduced system- atic errors and improved variability," Remote Sens. Environ., vol. 214, pp. 115-134, Sep. 2018, doi: 10.1016/j.rse.2018.05.022.
  148. Pi-MEP, "Match-up database analyses report," SMAP SSS L3 v5.0, 2019. [Online]. Available: https://pimep.ifremer.fr/diffusion/analyses/ mdb-database/SCS/smap-l3-jpl-v5.0-8dr/tsg-samos/report/pimep- mdb-report_SCS_smap-l3-jpl-v5.0-8dr_tsg-samos_20201215.pdf
  149. N. Reul et al., "Sea surface salinity estimates from spaceborne L-band radiometers : An overview of the fi rst decade of observation (2010- 2019)," Remote Sens. Environ., vol. 242, 2020, Art. no. 111769, doi: 10.1016/j.rse.2020.111769.
  150. P. Rostosky, G. Spreen, S. L. Farrell, T. Frost, G. Heygster, and C. Melsheimer, "Snow depth retrieval on Arctic Sea ice from passive microwave radiometers-Improvements and extensions to multiyear ice using lower frequencies," J. Geophys. Res. Oceans, vol. 123, no. 10, pp. 7120-7138, Oct. 2018, doi: 10.1029/2018JC014028.
  151. P. W. Gaiser, "WindSat-satellite-based polarimetric microwave radiome- ter," in Proc. IEEE MTT-S Int. Microw. Symp. Dig., vol. 1 pp. 403-406, 1999.
  152. L. Tsang, J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing. Cambridge, MA, USA: MIT Press, 1985.
  153. P. S. Narvekar, G. Heygster, R. Tonboe, and T. J. Jackson, "Analysis of WindSat data over Arctic Sea ice," in Proc. IEEE Int. Geosci. Remote Sens. Symp., vol. 5, pp. V369-V372, 2008.
  154. P. W. Gaiser, K. M. St Germain, and E. M. Twarog, "WindSat-space borne remote sensing of ocean surface winds," in Proc. Celebrating Past Teaming Toward Future, vol. 1, p. 208, 2003.
  155. W. L. Jones, J. D. Park, S. Soisuvarn, L. Hong, P. W. Gaiser, and K. M. S. Germain, "Deep-space calibration of the WindSat radiometer," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 3, pp. 476-495, Mar. 2006.
  156. F. J. Wentz, L. Ricciardulli, C. Gentemann, T. Meissner, K.A. Hilburn, and J. Scott, "Remote Sensing Systems Coriolis WindSat Environmental Suite on 0.25 deg grid, Version 7.0.1," Remote Sens. Syst., Santa Rosa, CA, 2013. [Online]. Available: www.remss.com/missions/windsat
  157. T. Meissner and F. J. Wentz, "Wind-vector retrievals under rain with passive satellite microwave radiometers," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 9, pp. 3065-3083, Sep. 2009.
  158. T. Meissner and F. Wentz, "Ocean retrievals for windsat: Radiative transfer model, algorithm, validation," in Proc. OCEANS MTS/IEEE, 2005, pp. 130-133.
  159. L. Zhang, X. Yin, H. Shi, and Z. Wang, "Hurricane wind speed estimation using WindSat 6 and 10 GHz brightness temperatures," Remote Sens., vol. 8, no. 9, p. 721, 2016, doi: 10.3390/rs8090721.
  160. M. Zheng, X.-M. Li, and J. Sha, "Comparison of sea surface wind field measured by HY-2A scatterometer and WindSat in global oceans," J. Oceanol. Limnol., vol. 37, no. 1, pp. 38-46, 2019.
  161. V. U. Zavorotny, S. Gleason, E. Cardellach, and A. Camps, "Tutorial on remote sensing using GNSS bistatic radar of opportunity," IEEE Geosci. Remote Sens. Mag., vol. 2, no. 4, pp. 8-45, Apr. 2014.
  162. M. Martin-Neira et al., "A passive reflectometry and interferometry system (PARIS): Application to ocean altimetry," ESA J., vol. 17, no. 4, pp. 331-355, 1993.
  163. C. D. Hall and R. A. Cordey, "Multistatic scatterometry," in Proc. Int. Geosci. Remote Sens. Symp., "Remote Sens.: Moving Toward 21st Century," 1988, pp. 561-562, doi: 10.1109/igarss.1988.570200.
  164. J. L. Garrison, S. J. Katzberg, and M. I. Hill, "Effect of sea roughness on bistatically scattered range coded signals from the global positioning system," Geophys. Res. Lett., vol. 25, no. 13, pp. 2257-2260, 1998, doi: 10.1029/98gl51615.
  165. B. Lin, S. J. Katzberg, J. L. Garrison, and B. A. Wielicki, "Rela- tionship between GPS signals reflected from sea surfaces and surface winds: Modeling results and comparisons with aircraft measurements," J. Geophys. Res. Oceans, vol. 104, no. C9, pp. 20713-20727, 1999, doi: 10.1029/1999jc900176.
  166. S. T. Lowe, J. L. LaBrecque, C. Zuffada, L. J. Romans, L. E. Young, and G. A. Hajj, "First spaceborne observation of an Earth-reflected GPS signal," Radio Sci., vol. 37, no. 1, pp. 7-28, 2002, doi: 10.1029/2000rs002539.
  167. G. Beyerle, "GPS radio occultations with CHAMP: A radio holo- graphic analysis of GPS signal propagation in the troposphere and surface reflections," J. Geophys. Res., vol. 107, p. D24, 2002, doi: 10.1029/2001jd001402.
  168. G. Beyerle and K. Hocke, "Observation and simulation of direct and reflected GPS signals in radio occultation experiments," Geophys. Res. Lett., vol. 28, no. 9, pp. 1895-1898, 2001, doi: 10.1029/2000gl012530.
  169. V. U. Zavorotny and A. G. Voronovich, "Scattering of GPS signals from the ocean with wind remote sensing application," IEEE Trans. Geosci. Remote Sens., vol. 38, no. 2, pp. 951-964, Feb. 2000.
  170. T. Elfouhaily, B. Chapron, K. Katsaros, and D. Vandemark, "A uni- fied directional spectrum for long and short wind-driven waves," J. Geophys. Res. Oceans, vol. 102, no. C7, pp. 15781-15796, 1997, doi: 10.1029/97jc00467.
  171. C. Cox and W. Munk, "Measurement of the roughness of the sea surface from photographs of the Sun's glitter," J. Opt. Soc. Amer., vol. 44, no. 11, pp. 838-850, 1954, doi: 10.1364/josa.44.000838.
  172. M. P. Clarizia, C. S. Ruf, P. Jales, and C. Gommenginger, "Spaceborne GNSS-R minimum variance wind speed estimator," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 11, pp. 6829-6843, Nov. 2014.
  173. J. L. Garrison, A. Komjathy, V. U. Zavorotny, and S. J. Katzberg, "Wind speed measurement using forward scattered GPS signals," IEEE Trans. Geosci. Remote Sens., vol. 40, no. 1, pp. 50-65, Jan. 2002.
  174. A. G. Voronovich and V. U. Zavorotny, "Bistatic radar equation for signals of opportunity revisited," IEEE Trans. Geosci. Remote Sens., vol. 56, no. 4, pp. 1959-1968, Apr. 2018.
  175. S. Gleason et al., "Detection and processing of bistatically reflected GPS signals from low Earth orbit for the purpose of ocean remote sens- ing," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 6, pp. 1229-1241, Jun. 2005.
  176. M. Unwin et al., "GNSS enabling new capabilities in space on the TechDemoSat-1 satellite," Proc. 30th Int. Tech. Meeting Satell. Division Inst. Navig., 2017, pp. 4066-4079, doi: 10.33012/2017.15349.
  177. M. Unwin, P. Jales, J. Tye, C. Gommenginger, G. Foti, and J. Rosello, "Spaceborne GNSS-reflectometry on TechDemoSat-1: Early mission operations and exploitation," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 9, no. 10, pp. 4525-4539, Oct. 2016.
  178. M. Asgarimehr, J. Wickert, and S. Reich, "TDS-1 GNSS reflectometry: Development and validation of forward scattering winds," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 11, no. 11, pp. 4534-4541, Nov. 2018.
  179. G. Foti et al., "Spaceborne GNSS reflectometry for ocean winds: First results from the U.K. TechDemoSat-1 mission," Geophys. Res. Lett., vol. 42, no. 13, pp. 5435-5441, 2015, doi: 10.1002/2015GL064204.
  180. G. Foti, C. Gommenginger, and M. Srokosz, "First spaceborne GNSS- reflectometry observations of hurricanes from the U.K. TechDemoSat- 1 mission," Geophys. Res. Lett., vol. 44, pp. 12358-12366, 2017, doi: 10.1002/2017gl076166.
  181. C. S. Ruf et al., "A new paradigm in earth environmental monitoring with the CYGNSS small satellite constellation," Sci. Rep., vol. 8, pp. 1-13, 2018, doi: 10.1038/s41598-018-27127-4.
  182. M. Asgarimehr, J. Wickert, and S. Reich, "Evaluating impact of rain attenuation on space-borne GNSS reflectometry wind speeds," Remote Sens., vol. 11, no. 9, 2019, Art. no. 1048, doi: 10.3390/rs11091048.
  183. J. Wickert et al., "GEROS-ISS: GNSS reflectometry, radio occultation, and scatterometry onboard the International Space Station," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 9, no. 10, pp. 4552-4581, Oct. 2016.
  184. E. Cardellach et al., "GNSS Transpolar Earth Reflectometry ex- ploriNg system (G-TERN): Mission concept," IEEE Access, vol. 6, pp. 13980-14018, 2018, doi: 10.1109/ACCESS.2018.2814072.
  185. S. Gleason, "Space-based GNSS scatterometry: Ocean wind sensing using an empirically calibrated model," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 9, pp. 4853-4863, Sep. 2013.
  186. C. S. Ruf, S. Gleason, and D. S. McKague, "Assessment of CYGNSS wind speed retrieval uncertainty," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 12, no. 1, pp. 87-97, Jan. 2019.
  187. Z. Cui, Z. Pu, V. Tallapragada, R. Atlas, and C. S. Ruf, "A preliminary impact study of CYGNSS ocean surface wind speeds on numerical simu- lations of hurricanes," Geophys. Res. Lett., vol. 46, no. 5, pp. 2019, doi: 10.1029/2019gl082236.
  188. C. Li and W. Huang, "An algorithm for sea-surface wind field retrieval from GNSS-R delay-Doppler map," IEEE Geosci. Remote Sens. Lett., vol. 11, no. 12, pp. 2110-2114, Dec. 2014.
  189. M. Asgarimehr, I. Zhelavskaya, G. Foti, S. Reich, and J. Wickert, "A GNSS-R geophysical model function: Machine learning for wind speed retrievals," IEEE Geosci. Remote Sens. Lett., vol. 17, no. 8, pp. 1333-1337, Aug. 2020.
  190. J. Reynolds, M. P. Clarizia, and E. Santi, "Wind speed estimation from CYGNSS using artificial neural networks," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 13, pp. 708-716, 2020, doi: 10.1109/js- tars.2020.2968156.
  191. Y. Liu, I. Collett, and Y. J. Morton, "Application of neural network to GNSS-R wind speed retrieval," IEEE Trans. Geosci. Remote Sens., vol. 57, no. 12, pp. 9756-9766, Dec. 2019.
  192. M. Wiehl, B. Legrésy, and R. Dietrich, "Potential of reflected GNSS signals for ice sheet remote sensing," Prog. Electromagn. Res., vol. 40, pp. 177-205, 2003, doi: 10.2528/pier02102202.
  193. S. Gleason, "Remote sensing of ocean, ice and land surfaces using bistat- ically scattered GNSS signals from low earth orbit," PhD thesis, Univ. Surrey, Guildford, U.K., 2006, doi: 10.1109/JSTARS.2020.2966880.
  194. S. Gleason, "Towards sea ice remote sensing with space detected GPS signals: Demonstration of technical feasibility and initial consistency check using low resolution sea ice information," Remote Sens., vol. 2, no. 8, pp. 2017-2039, 2010, doi: 10.3390/rs2082017.
  195. A. Alonso-Arroyo, V. U. Zavorotny, and A. Camps, "Sea ice detection using U.K. TDS-1 GNSS-R data," IEEE Trans. Geosci. Remote Sens., vol. 55, no. 9, pp. 4989-5001, Sep. 2017.
  196. Q. Yan and W. Huang, "Detecting sea ice from TechDemoSat-1 data using support vector machines with feature selection," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 12, no. 5, pp. 1409-1416, 2019, doi: 10.1109/JSTARS.2019.2907008.
  197. Q. Yan and W. Huang, "Sea ice thickness measurement using spaceborne GNSS-R: First results with TechDemoSat-1 data," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 13, pp. 577-587, 2020.
  198. Y. Zhu, T. Tao, J. Zou, K. Yu, J. Wickert, and M. Semmling, "Spaceborne GNSS reflectometry for retrieving sea ice concentration using TDS-1 data," IEEE Geosci. Remote Sens. Lett., vol. 18, no. 4, pp. 612-616, Nov. 2021.
  199. W. Li, E. Cardellach, F. Fabra, S. Ribo, and A. Rius, "Assessment of spaceborne GNSS-R ocean altimetry performance using CYGNSS mission raw data," IEEE Trans. Geosci. Remote Sens., vol. 58, no. 1, pp. 238-250, Jan. 2020.
  200. M. P. Clarizia, C. Ruf, P. Cipollini, and C. Zuffada, "First spaceborne observation of sea surface height using GPS-reflectometry," Geophys. Res. Lett., vol. 43, no. 2, pp. 767-774, 2016.
  201. W. Li, E. Cardellach, F. Fabra, A. Rius, S. Ribó, and M. Martín-Neira, "First spaceborne phase altimetry over sea ice using TechDemoSat-1 GNSS-R signals," Geophys. Res. Lett., vol. 44, no. 16, pp. 8369-8376, 2017, doi: 10.1002/2017gl074513.
  202. J. Mashburn, P. Axelrad, S. T. Lowe, and K. M. Larson, "Global ocean altimetry with GNSS reflections from TechDemoSat-1," IEEE Trans. Geosci. Remote Sens., vol. 56, no. 7, pp. 4088-4097, Jul. 2018.
  203. A. M. Semmling et al., "Sea surface topography retrieved from GNSS reflectometry phase data of the GEOHALO flight mission," Geophys. Res. Lett., vol. 41, no. 3, pp. 954-960, 2014, doi: 10.1002/2013gl058725.
  204. G. Ruffini, F. Soulat, M. Caparrini, O. Germain, and M. Martín-Neira, "The eddy experiment: Accurate GNSS-R ocean altimetry from low alti- tude aircraft," Geophys. Res. Lett., vol. 31, no. 12, 2004, Art. no. L12306, doi: 10.1029/2004gl019994.
  205. M. Hoseini, M. Asgarimehr, V. Zavorotny, H. Nahavandchi, C. Ruf, and J. Wickert, "First evidence of mesoscale ocean eddies signature in GNSS reflectometry measurements," Remote Sens., vol. 12, no. 3, p. 542, 2020, doi: 10.3390/rs12030542.
  206. M. Asgarimehr, V. Zavorotny, J. Wickert, and S. Reich, "Can GNSS reflectometry detect precipitation over oceans?," Geophys. Res. Lett., vol. 45, no. 22, pp. 12512-585592, 2018, doi: 10.1029/2018gl079708.
  207. M. Asgarimehr et al., "Remote sensing of precipitation using reflected GNSS signals: Response analysis of polarimetric observations," in Proc. IEEE Trans. Geosci. Remote Sens., vol. 60, 2022, Art. no. 5800412, doi: 10.1109/TGRS.2021.3062492.
  208. H. Carreno-Luengo et al., "3Cat-2-An experimental nanosatellite for GNSS-R earth observation: Mission concept and analysis," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 9, no. 10, pp. 4540-4551, Oct. 2016.
  209. C. Jing, X. Niu, C. Duan, F. Lu, G. Di, and X. Yang, "Sea surface wind speed retrieval from the first Chinese GNSS-R mission: Technique and preliminary results," Remote Sens., vol. 11, no. 24, 2019, Art. no. 3013, doi: 10.3390/rs11243013.
  210. D. Masters et al., "First results from the spire GNSS-R payload CubeSat missions," AGUFM, vol. 2019, pp. G14A-G106, 2019.
  211. Y. Sun et al., "The status and progress of Fengyun-3e GNOS II mission for GNSS remote sensing," in Proc. IEEE Int. Geosci. Remote Sens. Symp., Jul. 2019, pp. 5181-5184.
  212. A. Camps et al., "Fsscat, the 2017 Copernicus masters' 'ESA Sentinel small satellite challenge' winner: A federated polar and soil moisture tandem mission based on 6U Cubesats," in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2018, pp. 8285-8287.
  213. A. Dielacher et al., "The ESA passive reflectometry and dosimetry (PRETTY) mission," in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2019, pp. 5173-5176.
  214. J.-C. Juang, Y.-F. Tsai, and C.-T. Lin, "FORMOSAT-7R mission for GNSS reflectometry," in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2019, pp. 5177-5180.
  215. M. Martin-Neira, S. D'Addio, C. Buck, N. Floury, and R. Prieto-Cerdeira, "The PARIS ocean altimeter in-orbit demonstrator," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 6, pp. 2209-2237, Jun. 2011.