Academia.eduAcademia.edu

Outline

Thermal stability of monolayer WS2 in BEOL conditions

Journal of Physics: Materials

https://doi.org/10.1088/2515-7639/ABD4F2

Abstract

Monolayer tungsten disulfide (WS2) has recently attracted large interest as a promising material for advanced electronic and optoelectronic devices such as photodetectors, modulators, and sensors. Since these devices can be integrated in a silicon (Si) chip via back-end-of-line (BEOL) processes, the stability of monolayer WS2 in BEOL fabrication conditions should be studied. In this work, the thermal stability of monolayer single-crystal WS2 at typical BEOL conditions is investigated; namely (i) heating temperature of 300 °C, (ii) pressures in the medium-(10-3 mbar) and high-(10-8 mbar) vacuum range; (iii) heating times from 30 minutes to 20 hours. Structural, optical and chemical analyses of WS2 are performed via scanning electron microscopy (SEM), Raman spectroscopy, photoluminescence (PL) and X-ray photoelectron spectroscopy (XPS). It is found that monolayer single-crystal WS2 is intrinsically stable at these temperature and pressures, even after 20 hours of thermal treatment. The thermal stability of WS2 is also preserved after exposure to low-current electron beam (12 pA) or low-fluence laser (0.9 mJ/m 2), while higher laser fluencies cause photo-activated degradation upon thermal treatment. These results are instrumental to define fabrication and in-line monitoring procedures that allow the integration of WS2 in device fabrication flows without compromising the material quality.

References (74)

  1. Khanna V K, 2016, Transition Metal DichalcogenidesTransition Metal Dichalcogenides -Based Nanoelectronics, pp 313-22
  2. Ovchinnikov D, Allain A, Huang Y S, Dumcenco D and Kis A, 2014, Electrical transport properties of single-layer WS2, ACS Nano 8 8174-81
  3. Magnozzi M, Ferrera M, Piccinini G, Pace S, Forti S, Fabbri F, Coletti C, Bisio F and Canepa M, 2020, Optical dielectric function of two-dimensional WS2 on epitaxial graphene, 2D Mater. 7 025024
  4. Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V. and Kis A, 2017, 2D transition metal dichalcogenides, Nat. Rev. Mater. 2 17033
  5. Chhowalla M, Liu Z and Zhang H, 2015, Two-dimensional transition metal dichalcogenide (TMD) nanosheets, Chem. Soc. Rev. 44 2584-6
  6. Zhou H, Wang C, Shaw J C, Cheng R, Chen Y, Huang X, Liu Y, Weiss N O, Lin Z, Huang Y and Duan X, 2015, Large area growth and electrical properties of p-type WSe2 atomic layers, Nano Lett. 15 709-13
  7. Obeid M M, Stampfl C, Bafekry A, Guan Z, Jappor H R, Nguyen C V., Naseri M, Hoat D M, Hieu N N, Krauklis A E, Vu T V. and Gogova D, 2020, First-principles investigation of nonmetal doped single-layer BiOBr as a potential photocatalyst with a low recombination rate, Phys. Chem. Chem. Phys. 22 15354- 64
  8. Abed Al-Abbas S S, Muhsin M K and Jappor H R, 2019, Two-dimensional GaTe monolayer as a potential gas sensor for SO2 and NO2 with discriminate optical properties, Superlattices Microstruct. 135 106245
  9. Wang H, Yu L, Lee Y H, Shi Y, Hsu A, Chin M L, Li L J, Dubey M, Kong J and Palacios T, 2012, Integrated circuits based on bilayer MoS2 transistors, Nano Lett. 12 4674-80
  10. Radisavljevic B, Whitwick M B and Kis A, 2011, Integrated circuits and logic operations based on single- layer MoS2, ACS Nano 5 9934-8
  11. Salehzadeh O, Tran N H, Liu X, Shih I and Mi Z, 2014, Exciton kinetics, quantum efficiency, and efficiency droop of monolayer MoS2 light-emitting devices, Nano Lett. 14 4125-30
  12. Jo S, Ubrig N, Berger H, Kuzmenko A B and Morpurgo A F, 2014, Mono-and bilayer WS2 light-emitting transistors, Nano Lett. 14 2019-25
  13. Gutiérrez H R, Perea-López N, Elías A L, Berkdemir A, Wang B, Lv R, López-Urías F, Crespi V H, Terrones H and Terrones M, 2013, Extraordinary room-temperature photoluminescence in triangular WS2 monolayers, Nano Lett. 13 3447-54
  14. Conley H J, Wang B, Ziegler J I, Haglund R F, Pantelides S T and Bolotin K I, 2013, Bandgap engineering of strained monolayer and bilayer MoS2, Nano Lett. 13 3626-30
  15. Tongay S, Zhou J, Ataca C, Lo K, Matthews T S, Li J, Grossman J C and Wu J, 2012, Thermally driven crossover from indirect toward direct bandgap in 2D Semiconductors: MoSe2 versus MoS2, Nano Lett. 12 5576-80
  16. Mak K F, Lee C, Hone J, Shan J and Heinz T F, 2010, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105 136805
  17. Ruppert C, Aslan O B and Heinz T F, 2014, Optical properties and band gap of single-and few-layer MoTe2 crystals, Nano Lett. 14 6231-6
  18. Abdulraheem Z and Jappor H R, 2020, Tailoring the electronic and optical properties of SnSe2/InS van der Waals heterostructures by the biaxial strains, Phys. Lett. Sect. A Gen. At. Solid State Phys. 384 126909
  19. Obeid M M, Shukur M M, Edrees S J, Khenata R, Ghebouli M A, Khandy S A, Bouhemadou A, Jappor H R and Wang X, 2019, Electronic band structure, thermodynamics and optical characteristics of BeO1-xAx (A = S, Se, Te) alloys: Insights from ab initio study, Chem. Phys. 526 110414
  20. Xie L M, 2015, Two-dimensional transition metal dichalcogenide alloys: Preparation, characterization and applications, Nanoscale 7 18392-401
  21. Zhang W, Li X, Jiang T, Song J, Lin Y, Zhu L and Xu X, 2015, CVD synthesis of Mo(1-x)WxS2 and MoS2(1-x)Se2x alloy monolayers aimed at tuning the bandgap of molybdenum disulfide, Nanoscale 7 13554-60
  22. Meng Y, Wang T, Li Z, Qin Y, Lian Z, Chen Y, Lucking M C, Beach K, Taniguchi T, Watanabe K, Tongay S, Song F, Terrones H and Shi S F, 2019, Excitonic Complexes and Emerging Interlayer Electron- Phonon Coupling in BN Encapsulated Monolayer Semiconductor Alloy: WS0.6Se1.4, Nano Lett. 19 299- 307
  23. Okada M, Kutana A, Kureishi Y, Kobayashi Y, Saito Y, Saito T, Watanabe K, Taniguchi T, Gupta S, Miyata Y, Yakobson B I, Shinohara H and Kitaura R, 2018, Direct and Indirect Interlayer Excitons in a van der Waals Heterostructure of hBN/WS2/MoS2/hBN, ACS Nano 12 2498-505
  24. Ross J S, Rivera P, Schaibley J, Lee-Wong E, Yu H, Taniguchi T, Watanabe K, Yan J, Mandrus D, Cobden D, Yao W and Xu X, 2017, Interlayer Exciton Optoelectronics in a 2D Heterostructure p-n Junction, Nano Lett. 17 638-43
  25. Sahoo P K, Memaran S, Nugera F A, Xin Y, Díaz Márquez T, Lu Z, Zheng W, Zhigadlo N D, Smirnov D, Balicas L and Gutiérrez H R, 2019, Bilayer Lateral Heterostructures of Transition-Metal Dichalcogenides and Their Optoelectronic Response, ACS Nano 13 12372-84
  26. Sun Z, Martinez A and Wang F, 2016, Optical modulators with 2D layered materials, Nat. Photonics 10 227-38
  27. Akinwande D, Huyghebaert C, Wang C-H, Serna M I, Goossens S, Li L-J, Wong H-S P and Koppens F H L, 2019, Graphene and two-dimensional materials for silicon technology, Nature 573 507-18
  28. Neumaier D, Pindl S and Lemme M C, 2019, Integrating graphene into semiconductor fabrication lines, Nat. Mater. 18 525-9
  29. Schram T, Smets Q, Groven B, Heyne M H, Kunnen E, Thiam A, Devriendt K, Delabie A, Lin D, Lux M, Chiappe D, Asselberghs I, Brus S, Huyghebaert C, Sayan S, Juncker A, Caymax M and Radu I P, 2017, WS2 transistors on 300 mm wafers with BEOL compatibility, European Solid-State Device Research Conference (IEEE) pp 212-5
  30. Rinerson D and Cheung R, 2012, Device Fabrication Method
  31. Rodder M A, Vasishta S and Dodabalapur A, 2020, Double-Gate MoS2 Field-Effect Transistor with a Multilayer Graphene Floating Gate: A Versatile Device for Logic, Memory, and Synaptic Applications, ACS Appl. Mater. Interfaces 12 33926-33
  32. Yim C, McEvoy N, Riazimehr S, Schneider D S, Gity F, Monaghan S, Hurley P K, Lemme M C and Duesberg G S, 2018, Wide Spectral Photoresponse of Layered Platinum Diselenide-Based Photodiodes, Nano Lett. 18 1794-800
  33. Ansari L, Monaghan S, McEvoy N, Coileáin C, Cullen C P, Lin J, Siris R, Stimpel-Lindner T, Burke K F, Mirabelli G, Duffy R, Caruso E, Nagle R E, Duesberg G S, Hurley P K and Gity F, 2019, Quantum confinement-induced semimetal-to-semiconductor evolution in large-area ultra-thin PtSe2 films grown at 400 °C, npj 2D Mater. Appl. 3 33
  34. Yang S, Liu D C, Tan Z L, Liu K, Zhu Z H and Qin S Q, 2018, CMOS-Compatible WS2-Based All- Optical Modulator, ACS Photonics 5 342-6
  35. Lee G, Oh S, Kim J and Kim J, 2020, Ambipolar Charge Transport in Two-Dimensional WS2 Metal- Insulator-Semiconductor and Metal-Insulator-Semiconductor Field-Effect Transistors, ACS Appl. Mater. Interfaces 12 23127-33
  36. Kazior T E, 2014, Beyond CMOS: heterogeneous integration of III-V devices, RF MEMS and other dissimilar materials/devices with Si CMOS to create intelligent microsystems, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 372 20130105
  37. Forti S, Rossi A, Büch H, Cavallucci T, Bisio F, Sala A, Menteş T O, Locatelli A, Magnozzi M, Canepa M, Müller K, Link S, Starke U, Tozzini V and Coletti C, 2017, Electronic properties of single-layer tungsten disulfide on epitaxial graphene on silicon carbide, Nanoscale 9 16412-9
  38. Yuan L and Huang L, 2015, Exciton dynamics and annihilation in WS2 2D semiconductors, Nanoscale 7 7402-8
  39. Benítez L A, Savero Torres W, Sierra J F, Timmermans M, Garcia J H, Roche S, Costache M V. and Valenzuela S O, 2020, Tunable room-temperature spin galvanic and spin Hall effects in van der Waals heterostructures, Nat. Mater. 19 170-5
  40. Garcia J H, Cummings A W and Roche S, 2017, Spin hall effect and weak antilocalization in graphene/transition metal dichalcogenide heterostructures, Nano Lett. 17 5078-83
  41. Zhu B, Chen X and Cui X, 2015, Exciton Binding Energy of Monolayer WS2, Sci. Rep. 5 9218
  42. Lan C, Zhou Z, Zhou Z, Li C, Shu L, Shen L, Li D, Dong R, Yip S and Ho J C, 2018, Wafer-scale synthesis of monolayer WS2 for high-performance flexible photodetectors by enhanced chemical vapor deposition, Nano Res. 11 3371-84
  43. Datta I, Chae S H, Bhatt G R, Li B, Yu Y, Cao L, Hone J and Lipson M, 2018, Giant electro-refractive modulation of monolayer WS2 embedded in photonic structures, Conference on Lasers and Electro-Optics (Washington, D.C.: OSA) p STu4N.7
  44. Gao J, Li B, Tan J, Chow P, Lu T-M and Koratkar N, 2016, Aging of Transition Metal Dichalcogenide Monolayers, ACS Nano 10 2628-35
  45. Perrozzi F, Emamjomeh S M, Paolucci V, Taglieri G, Ottaviano L and Cantalini C, 2017, Thermal stability of WS2 flakes and gas sensing properties of WS2/WO3 composite to H2, NH3 and NO2, Sensors Actuators B Chem. 243 812-22
  46. Rong Y, He K, Pacios M, Robertson A W, Bhaskaran H and Warner J H, 2015, Controlled Preferential Oxidation of Grain Boundaries in Monolayer Tungsten Disulfide for Direct Optical Imaging, ACS Nano 9 3695-703
  47. Fabbri F, Dinelli F, Forti S, Sementa L, Pace S, Piccinini G, Fortunelli A, Coletti C and Pingue P, 2020, Edge Defects Promoted Oxidation of Monolayer WS2 Synthesized on Epitaxial Graphene, J. Phys. Chem. C 124 9035-44
  48. Kang K, Godin K, Kim Y D, Fu S, Cha W, Hone J and Yang E-H, 2017, Graphene-Assisted Antioxidation of Tungsten Disulfide Monolayers: Substrate and Electric-Field Effect, Adv. Mater. 29 1603898
  49. English C D, Shine G, Dorgan V E, Saraswat K C and Pop E, 2016, Improved contacts to MoS2 transistors by ultra-high vacuum metal deposition, Nano Lett. 16 3824-30
  50. Late D J, Liu B, Matte H S S R, Dravid V P and Rao C N R, 2012, Hysteresis in single-layer MoS2 field effect transistors, ACS Nano 6 5635-41
  51. Vervuurt R H J, Kessels W M M E and Bol A A, 2017, Atomic Layer Deposition for Graphene Device Integration, Adv. Mater. Interfaces 4 1700232
  52. Andric S, Ohlsson Fhager L, Lindelöw F, Kilpi O-P and Wernersson L-E, 2019, Low-temperature back- end-of-line technology compatible with III-V nanowire MOSFETs, J. Vac. Sci. Technol. B 37 061204
  53. Bishop M D, Hills G, Srimani T, Lau C, Murphy D, Fuller S, Humes J, Ratkovich A, Nelson M and Shulaker M M, 2020, Fabrication of carbon nanotube field-effect transistors in commercial silicon manufacturing facilities, Nat. Electron. 3 492-501
  54. Kozhakhmetov A, Torsi R, Chen C Y and Robinson J A, 2020, Scalable Low-Temperature Synthesis of Two-Dimensional Materials Beyond Graphene, J. Phys. Mater. 4 012001
  55. Huyghebaert C, Schram T, Smets Q, Kumar Agarwal T, Verreck D, Brems S, Phommahaxay A, Chiappe D, El Kazzi S, Lockhart de la Rosa C, Arutchelvan G, Cott D, Ludwig J, Gaur A, Sutar S, Leonhardt A, Marinov D, Lin D, Caymax M, Asselberghs I, Pourtois G and Radu I P, 2018, 2D materials: roadmap to CMOS integration, 2018 IEEE International Electron Devices Meeting (IEDM) vol 2018-Decem (IEEE) pp 22.1.1-22.1.4
  56. Atkin P, Lau D W M, Zhang Q, Zheng C, Berean K J, Field M R, Ou J Z, Cole I S, Daeneke T and Kalantar-Zadeh K, 2018, Laser exposure induced alteration of WS2 monolayers in the presence of ambient moisture, 2D Mater. 5 015013
  57. Kotsakidis J C, Zhang Q, Vazquez De Parga A L, Currie M, Helmerson K, Gaskill D K and Fuhrer M S, 2019, Oxidation of Monolayer WS2 in Ambient Is a Photoinduced Process, Nano Lett. 19 5205-15
  58. Mishra N, Forti S, Fabbri F, Martini L, McAleese C, Conran B R, Whelan P R, Shivayogimath A, Jessen B S, Buß L, Falta J, Aliaj I, Roddaro S, Flege J I, Bøggild P, Teo K B K and Coletti C, 2019, Wafer-Scale Synthesis of Graphene on Sapphire: Toward Fab-Compatible Graphene, Small 15 1904906
  59. Rossi A, Spirito D, Bianco F, Forti S, Fabbri F, Büch H, Tredicucci A, Krahne R and Coletti C, 2018, Patterned tungsten disulfide/graphene heterostructures for efficient multifunctional optoelectronic devices, Nanoscale 10 4332-8
  60. Kochat V, Nath Pal A, Sneha E S, Sampathkumar A, Gairola A, Shivashankar S A, Raghavan S and Ghosh A, 2011, High contrast imaging and thickness determination of graphene with in-column secondary electron microscopy, J. Appl. Phys. 110 014315
  61. Berkdemir A, Gutiérrez H R, Botello-Méndez A R, Perea-López N, Elías A L, Chia C-I, Wang B, Crespi V H, López-Urías F, Charlier J-C, Terrones H and Terrones M, 2013, Identification of individual and few layers of WS2 using Raman Spectroscopy, Sci. Rep. 3 1755
  62. Zhang Y, Zhang Y, Ji Q, Ju J, Yuan H, Shi J, Gao T, Ma D, Liu M, Chen Y, Song X, Hwang H Y, Cui Y and Liu Z, 2013, Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary, ACS Nano 7 8963-71
  63. Cong C, Shang J, Wang Y and Yu T, 2018, Optical Properties of 2D Semiconductor WS2, Adv. Opt. Mater. 6 1700767
  64. Xu Z Q, Zhang Y, Lin S, Zheng C, Zhong Y L, Xia X, Li Z, Sophia P J, Fuhrer M S, Cheng Y B and Bao Q, 2015, Synthesis and Transfer of Large-Area Monolayer WS2 Crystals: Moving Toward the Recyclable Use of Sapphire Substrates, ACS Nano 9 6178-87
  65. Carozo V, Wang Y, Fujisawa K, Carvalho B R, McCreary A, Feng S, Lin Z, Zhou C, Perea-López N, Elías A L, Kabius B, Crespi V H and Terrones M, 2017, Optical identification of sulfur vacancies: Bound excitons at the edges of monolayer tungsten disulfide, Sci. Adv. 3 e1602813
  66. Gutiérrez H R, Perea-López N, Elías A L, Berkdemir A, Wang B, Lv R, López-Urías F, Crespi V H, Terrones H and Terrones M, 2013, Extraordinary room-temperature photoluminescence in triangular WS2 monolayers, Nano Lett. 13 3447-54
  67. Okuno Y, Lancry O, Tempez A, Cairone C, Bosi M, Fabbri F and Chaigneau M, 2018, Probing the nanoscale light emission properties of a CVD-grown MoS2 monolayer by tip-enhanced photoluminescence, Nanoscale 10 14055-9
  68. Fabbri F, Rotunno E, Cinquanta E, Campi D, Bonnini E, Kaplan D, Lazzarini L, Bernasconi M, Ferrari C, Longo M, Nicotra G, Molle A, Swaminathan V and Salviati G, 2016, Novel near-infrared emission from crystal defects in MoS2 multilayer flakes, Nat. Commun. 7 13044
  69. McCreary A, Berkdemir A, Wang J, Nguyen M A, Elías A L, Perea-López N, Fujisawa K, Kabius B, Carozo V, Cullen D A, Mallouk T E, Zhu J and Terrones M, 2016, Distinct photoluminescence and Raman spectroscopy signatures for identifying highly crystalline WS2 monolayers produced by different growth methods, J. Mater. Res. 31 931-44
  70. Anon, 1994, Concise Encyclopedia Chemistry (Berlin, New York: DE GRUYTER)
  71. Brainard W A, 1969, Thermal stability and friction of disulfides, diselenides, and ditellurides of molybdenum and tungsten in ultrahigh vacuum, NASA; United States, Tech. reports
  72. Donarelli M, Prezioso S, Perrozzi F, Bisti F, Nardone M, Giancaterini L, Cantalini C and Ottaviano L, 2015, Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors, Sensors Actuators, B Chem. 207 602-13
  73. Donarelli M, Bisti F, Perrozzi F and Ottaviano L, 2013, Tunable sulfur desorption in exfoliated MoS2 by means of thermal annealing in ultra-high vacuum, Chem. Phys. Lett. 588 198-202
  74. Xie F Y, Gong L, Liu X, Tao Y T, Zhang W H, Chen S H, Meng H and Chen J, 2012, XPS studies on surface reduction of tungsten oxide nanowire film by Ar + bombardment, J. Electron Spectros. Relat. Phenomena 185 112-8